Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import os | |
| import spaces | |
| import uuid | |
| from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler | |
| from diffusers.utils import export_to_video | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from PIL import Image | |
| # Constants | |
| base = "frankjoshua/toonyou_beta6" | |
| repo = "ByteDance/AnimateDiff-Lightning" | |
| checkpoints = { | |
| "1-Step" : ["animatediff_lightning_1step_diffusers.safetensors", 1], | |
| "2-Step" : ["animatediff_lightning_2step_diffusers.safetensors", 2], | |
| "4-Step" : ["animatediff_lightning_4step_diffusers.safetensors", 4], | |
| "8-Step" : ["animatediff_lightning_8step_diffusers.safetensors", 8], | |
| } | |
| loaded = None | |
| # Ensure model and scheduler are initialized in GPU-enabled function | |
| if torch.cuda.is_available(): | |
| device = "cuda" | |
| dtype = torch.float16 | |
| adapter = MotionAdapter().to(device, dtype) | |
| pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device) | |
| pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") | |
| else: | |
| raise NotImplementedError("No GPU detected!") | |
| # Function | |
| def generate_image(prompt, ckpt): | |
| global loaded | |
| print(prompt, ckpt) | |
| checkpoint = checkpoints[ckpt][0] | |
| num_inference_steps = checkpoints[ckpt][1] | |
| if loaded != num_inference_steps: | |
| pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device=device), strict=False) | |
| loaded = num_inference_steps | |
| output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=num_inference_steps) | |
| name = str(uuid.uuid4()).replace("-", "") | |
| path = f"/tmp/{name}.mp4" | |
| export_to_video(output.frames[0], path, fps=10) | |
| return path | |
| # Gradio Interface | |
| with gr.Blocks(css="style.css") as demo: | |
| gr.HTML("<h1><center>AnimateDiff-Lightning ⚡</center></h1>") | |
| gr.HTML("<p><center>Lightning-fast text-to-video generation</center></p><p><center><a href='https://huggingface.co/ByteDance/AnimateDiff-Lightning'>https://huggingface.co/ByteDance/AnimateDiff-Lightning</a></center></p>") | |
| with gr.Group(): | |
| with gr.Row(): | |
| prompt = gr.Textbox(label='Enter your prompt (English)', scale=8) | |
| ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True) | |
| submit = gr.Button(scale=1, variant='primary') | |
| video = gr.Video(label='AnimateDiff-Lightning Generated Image') | |
| prompt.submit( | |
| fn=generate_image, | |
| inputs=[prompt, ckpt], | |
| outputs=video, | |
| ) | |
| submit.click( | |
| fn=generate_image, | |
| inputs=[prompt, ckpt], | |
| outputs=video, | |
| ) | |
| demo.queue().launch() |