Spaces:
Sleeping
Sleeping
Update game3.py
Browse files
game3.py
CHANGED
|
@@ -47,7 +47,8 @@ def func3(num_selected, human_predict, num1, num2, user_important):
|
|
| 47 |
# Load model directly
|
| 48 |
# Use a pipeline as a high-level helper
|
| 49 |
|
| 50 |
-
|
|
|
|
| 51 |
output = classifier([text['text']])
|
| 52 |
|
| 53 |
print(output)
|
|
@@ -153,7 +154,8 @@ def func3_written(text_written, human_predict, lang_written):
|
|
| 153 |
# tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
| 154 |
# model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
| 155 |
|
| 156 |
-
|
|
|
|
| 157 |
|
| 158 |
output = classifier([text_written])
|
| 159 |
|
|
@@ -173,7 +175,7 @@ def func3_written(text_written, human_predict, lang_written):
|
|
| 173 |
|
| 174 |
import shap
|
| 175 |
|
| 176 |
-
gender_classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", return_all_scores=True)
|
| 177 |
|
| 178 |
explainer = shap.Explainer(gender_classifier)
|
| 179 |
|
|
|
|
| 47 |
# Load model directly
|
| 48 |
# Use a pipeline as a high-level helper
|
| 49 |
|
| 50 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 51 |
+
classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", device=device)
|
| 52 |
output = classifier([text['text']])
|
| 53 |
|
| 54 |
print(output)
|
|
|
|
| 154 |
# tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
| 155 |
# model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
| 156 |
|
| 157 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
| 158 |
+
classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", device=device)
|
| 159 |
|
| 160 |
output = classifier([text_written])
|
| 161 |
|
|
|
|
| 175 |
|
| 176 |
import shap
|
| 177 |
|
| 178 |
+
gender_classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", return_all_scores=True, device=device)
|
| 179 |
|
| 180 |
explainer = shap.Explainer(gender_classifier)
|
| 181 |
|