removed forms for first 2 tabs and used cache to make program faster
Browse files- app.py +20 -12
- autocomplete.py +58 -1
- corpora/compass_filtered_v2.pkl.gz +3 -0
- word2vec.py +5 -5
app.py
CHANGED
|
@@ -21,6 +21,11 @@ def load_lsj_dict():
|
|
| 21 |
def load_all_models_words():
|
| 22 |
return sorted(load_compressed_word_list('corpora/compass_filtered.pkl.gz'), key=custom_sort)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# Load compressed word list
|
| 25 |
all_models_words = load_all_models_words()
|
| 26 |
|
|
@@ -28,6 +33,9 @@ all_models_words = load_all_models_words()
|
|
| 28 |
# Prepare lsj dictionary
|
| 29 |
lemma_dict = load_lsj_dict()
|
| 30 |
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
# Horizontal menu
|
| 33 |
active_tab = option_menu(None, ["Nearest neighbours", "Cosine similarity", "3D graph", 'Dictionary'],
|
|
@@ -41,13 +49,13 @@ if active_tab == "Nearest neighbours":
|
|
| 41 |
eligible_models = ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"]
|
| 42 |
all_models_words = load_all_models_words()
|
| 43 |
|
| 44 |
-
with st.
|
| 45 |
st.markdown("## Nearest Neighbours")
|
| 46 |
target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
|
| 47 |
if len(target_word) > 0:
|
| 48 |
target_word = target_word[0]
|
| 49 |
|
| 50 |
-
eligible_models =
|
| 51 |
|
| 52 |
models = st.multiselect(
|
| 53 |
"Select models to search for neighbours",
|
|
@@ -55,8 +63,8 @@ if active_tab == "Nearest neighbours":
|
|
| 55 |
)
|
| 56 |
n = st.slider("Number of neighbours", 1, 50, 15)
|
| 57 |
|
| 58 |
-
nearest_neighbours_button = st.
|
| 59 |
-
|
| 60 |
if nearest_neighbours_button:
|
| 61 |
if validate_nearest_neighbours(target_word, n, models) == False:
|
| 62 |
st.error('Please fill in all fields')
|
|
@@ -98,11 +106,11 @@ if active_tab == "Nearest neighbours":
|
|
| 98 |
|
| 99 |
# Cosine similarity tab
|
| 100 |
elif active_tab == "Cosine similarity":
|
| 101 |
-
eligible_models_1 = []
|
| 102 |
-
eligible_models_2 = []
|
| 103 |
all_models_words = load_all_models_words()
|
| 104 |
|
| 105 |
-
with st.
|
|
|
|
|
|
|
| 106 |
st.markdown("## Cosine similarity")
|
| 107 |
col1, col2 = st.columns(2)
|
| 108 |
col3, col4 = st.columns(2)
|
|
@@ -110,24 +118,24 @@ elif active_tab == "Cosine similarity":
|
|
| 110 |
word_1 = st.multiselect("Enter a word", placeholder="πατήρ", max_selections=1, options=all_models_words)
|
| 111 |
if len(word_1) > 0:
|
| 112 |
word_1 = word_1[0]
|
| 113 |
-
eligible_models_1 =
|
| 114 |
|
| 115 |
-
|
|
|
|
| 116 |
|
| 117 |
-
time_slice_1 = st.selectbox("Time slice word 1", eligible_models_1)
|
| 118 |
|
| 119 |
with st.container():
|
| 120 |
with col3:
|
| 121 |
word_2 = st.multiselect("Enter a word", placeholder="μήτηρ", max_selections=1, options=all_models_words)
|
| 122 |
if len(word_2) > 0:
|
| 123 |
word_2 = word_2[0]
|
| 124 |
-
eligible_models_2 =
|
| 125 |
|
| 126 |
with col4:
|
| 127 |
time_slice_2 = st.selectbox("Time slice word 2", eligible_models_2)
|
| 128 |
|
| 129 |
# Create button for calculating cosine similarity
|
| 130 |
-
cosine_similarity_button = st.
|
| 131 |
|
| 132 |
# If the button is clicked, execute calculation
|
| 133 |
if cosine_similarity_button:
|
|
|
|
| 21 |
def load_all_models_words():
|
| 22 |
return sorted(load_compressed_word_list('corpora/compass_filtered.pkl.gz'), key=custom_sort)
|
| 23 |
|
| 24 |
+
|
| 25 |
+
@st.cache_data
|
| 26 |
+
def load_models_for_word_dict():
|
| 27 |
+
return word_in_models_dict('corpora/compass_filtered.pkl.gz')
|
| 28 |
+
|
| 29 |
# Load compressed word list
|
| 30 |
all_models_words = load_all_models_words()
|
| 31 |
|
|
|
|
| 33 |
# Prepare lsj dictionary
|
| 34 |
lemma_dict = load_lsj_dict()
|
| 35 |
|
| 36 |
+
# Load dictionary with words as keys and eligible models as values
|
| 37 |
+
models_for_word_dict = load_models_for_word_dict()
|
| 38 |
+
|
| 39 |
|
| 40 |
# Horizontal menu
|
| 41 |
active_tab = option_menu(None, ["Nearest neighbours", "Cosine similarity", "3D graph", 'Dictionary'],
|
|
|
|
| 49 |
eligible_models = ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"]
|
| 50 |
all_models_words = load_all_models_words()
|
| 51 |
|
| 52 |
+
with st.container():
|
| 53 |
st.markdown("## Nearest Neighbours")
|
| 54 |
target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
|
| 55 |
if len(target_word) > 0:
|
| 56 |
target_word = target_word[0]
|
| 57 |
|
| 58 |
+
eligible_models = models_for_word_dict[target_word]
|
| 59 |
|
| 60 |
models = st.multiselect(
|
| 61 |
"Select models to search for neighbours",
|
|
|
|
| 63 |
)
|
| 64 |
n = st.slider("Number of neighbours", 1, 50, 15)
|
| 65 |
|
| 66 |
+
nearest_neighbours_button = st.button("Find nearest neighbours")
|
| 67 |
+
|
| 68 |
if nearest_neighbours_button:
|
| 69 |
if validate_nearest_neighbours(target_word, n, models) == False:
|
| 70 |
st.error('Please fill in all fields')
|
|
|
|
| 106 |
|
| 107 |
# Cosine similarity tab
|
| 108 |
elif active_tab == "Cosine similarity":
|
|
|
|
|
|
|
| 109 |
all_models_words = load_all_models_words()
|
| 110 |
|
| 111 |
+
with st.container():
|
| 112 |
+
eligible_models_1 = []
|
| 113 |
+
eligible_models_2 = []
|
| 114 |
st.markdown("## Cosine similarity")
|
| 115 |
col1, col2 = st.columns(2)
|
| 116 |
col3, col4 = st.columns(2)
|
|
|
|
| 118 |
word_1 = st.multiselect("Enter a word", placeholder="πατήρ", max_selections=1, options=all_models_words)
|
| 119 |
if len(word_1) > 0:
|
| 120 |
word_1 = word_1[0]
|
| 121 |
+
eligible_models_1 = models_for_word_dict[word_1]
|
| 122 |
|
| 123 |
+
with col2:
|
| 124 |
+
time_slice_1 = st.selectbox("Time slice word 1", options = eligible_models_1)
|
| 125 |
|
|
|
|
| 126 |
|
| 127 |
with st.container():
|
| 128 |
with col3:
|
| 129 |
word_2 = st.multiselect("Enter a word", placeholder="μήτηρ", max_selections=1, options=all_models_words)
|
| 130 |
if len(word_2) > 0:
|
| 131 |
word_2 = word_2[0]
|
| 132 |
+
eligible_models_2 = models_for_word_dict[word_2]
|
| 133 |
|
| 134 |
with col4:
|
| 135 |
time_slice_2 = st.selectbox("Time slice word 2", eligible_models_2)
|
| 136 |
|
| 137 |
# Create button for calculating cosine similarity
|
| 138 |
+
cosine_similarity_button = st.button("Calculate cosine similarity")
|
| 139 |
|
| 140 |
# If the button is clicked, execute calculation
|
| 141 |
if cosine_similarity_button:
|
autocomplete.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import pickle
|
| 2 |
import gzip
|
|
|
|
| 3 |
|
| 4 |
|
| 5 |
def get_unique_words(corpus_filename):
|
|
@@ -34,4 +35,60 @@ def get_autocomplete(input_word=" ", all_words=" "):
|
|
| 34 |
"""
|
| 35 |
Get a list of words that start with the input word
|
| 36 |
"""
|
| 37 |
-
return [word for word in all_words if word.startswith(input_word)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pickle
|
| 2 |
import gzip
|
| 3 |
+
from word2vec import *
|
| 4 |
|
| 5 |
|
| 6 |
def get_unique_words(corpus_filename):
|
|
|
|
| 35 |
"""
|
| 36 |
Get a list of words that start with the input word
|
| 37 |
"""
|
| 38 |
+
return [word for word in all_words if word.startswith(input_word)]
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def custom_sort(item):
|
| 42 |
+
if item.isdigit():
|
| 43 |
+
print(item)
|
| 44 |
+
return (2, item) # Place numbers last
|
| 45 |
+
else:
|
| 46 |
+
return (0, item.lower())
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def order_compressed_list(filename):
|
| 50 |
+
"""
|
| 51 |
+
Order the compressed list of words alphabetically and put numbers at the end
|
| 52 |
+
"""
|
| 53 |
+
# Strip extension from filename
|
| 54 |
+
filename_raw = filename.split('.')[0]
|
| 55 |
+
|
| 56 |
+
with gzip.open(filename, 'rb') as file:
|
| 57 |
+
words = pickle.load(file)
|
| 58 |
+
|
| 59 |
+
# Sort the words
|
| 60 |
+
sorted_words = sorted(words, key=custom_sort)
|
| 61 |
+
|
| 62 |
+
return sorted_words
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def read_compressed_list(filename):
|
| 66 |
+
"""
|
| 67 |
+
Read the compressed list of words
|
| 68 |
+
"""
|
| 69 |
+
with gzip.open(filename, 'rb') as file:
|
| 70 |
+
print(pickle.load(file))
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def word_in_models_dict(words_file):
|
| 74 |
+
"""
|
| 75 |
+
Create a dictionary with words as keys and models in which the word occurs as values
|
| 76 |
+
"""
|
| 77 |
+
with gzip.open(words_file, 'rb') as file:
|
| 78 |
+
words = pickle.load(file)
|
| 79 |
+
|
| 80 |
+
models = load_all_models()
|
| 81 |
+
|
| 82 |
+
word_models = {word: [] for word in words} # Initialize word_models dictionary with empty lists
|
| 83 |
+
|
| 84 |
+
for model in models:
|
| 85 |
+
model_name = convert_model_to_time_name(model[0])
|
| 86 |
+
for word in words:
|
| 87 |
+
if word in model[1].wv.key_to_index:
|
| 88 |
+
word_models[word].append(model_name)
|
| 89 |
+
|
| 90 |
+
return word_models
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
corpora/compass_filtered_v2.pkl.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:32818a420a9458c7e8be4919f78a2623ffca704cd93340b05b4825f209c01b61
|
| 3 |
+
size 127623
|
word2vec.py
CHANGED
|
@@ -161,15 +161,15 @@ def convert_model_to_time_name(model_name):
|
|
| 161 |
'''
|
| 162 |
Convert the model name to the time slice name
|
| 163 |
'''
|
| 164 |
-
if model_name == 'archaic_cbow':
|
| 165 |
return 'Archaic'
|
| 166 |
-
elif model_name == 'classical_cbow':
|
| 167 |
return 'Classical'
|
| 168 |
-
elif model_name == 'early_roman_cbow':
|
| 169 |
return 'Early Roman'
|
| 170 |
-
elif model_name == 'hellen_cbow':
|
| 171 |
return 'Hellenistic'
|
| 172 |
-
elif model_name == 'late_roman_cbow':
|
| 173 |
return 'Late Roman'
|
| 174 |
|
| 175 |
|
|
|
|
| 161 |
'''
|
| 162 |
Convert the model name to the time slice name
|
| 163 |
'''
|
| 164 |
+
if model_name == 'archaic_cbow' or model_name == 'archaic':
|
| 165 |
return 'Archaic'
|
| 166 |
+
elif model_name == 'classical_cbow' or model_name == 'classical':
|
| 167 |
return 'Classical'
|
| 168 |
+
elif model_name == 'early_roman_cbow' or model_name == 'early_roman':
|
| 169 |
return 'Early Roman'
|
| 170 |
+
elif model_name == 'hellen_cbow' or model_name == 'hellen':
|
| 171 |
return 'Hellenistic'
|
| 172 |
+
elif model_name == 'late_roman_cbow' or model_name == 'late_roman':
|
| 173 |
return 'Late Roman'
|
| 174 |
|
| 175 |
|