Spaces:
Build error
Build error
| import copy | |
| import math | |
| import pickle | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import difflib | |
| from typing import Optional, Tuple, Union | |
| from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, BertTokenizer, BertModel, Wav2Vec2Model, Wav2Vec2Config | |
| from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2FeatureEncoder | |
| from .motion_encoder import VQEncoderV6 | |
| def audio_to_time_aligned_text_features(inputs, processor, model, tokenizer, bert_model): | |
| with torch.no_grad(): | |
| logits = model(inputs.input_values).logits # shape: (1, time_steps, vocab_size) | |
| predicted_ids_per_timestep = torch.argmax(logits, dim=-1) # shape: (1, time_steps) | |
| predicted_ids_per_timestep = predicted_ids_per_timestep[0].cpu().numpy() | |
| vocab = processor.tokenizer.get_vocab() | |
| id_to_token = {v: k for k, v in vocab.items()} | |
| tokens_per_timestep = [id_to_token[id] for id in predicted_ids_per_timestep] | |
| predicted_ids = torch.argmax(logits, dim=-1) | |
| transcription = processor.decode(predicted_ids[0]) | |
| inputs_bert = tokenizer(transcription, return_tensors='pt') | |
| input_ids = inputs_bert['input_ids'][0] | |
| tokens_bert = tokenizer.convert_ids_to_tokens(input_ids) | |
| with torch.no_grad(): | |
| outputs_bert = bert_model(**inputs_bert.to(inputs.input_values.device)) | |
| all_token_embeddings = outputs_bert.last_hidden_state[0] | |
| per_timestep_chars = [] | |
| per_timestep_char_indices = [] | |
| for idx, t in enumerate(tokens_per_timestep): | |
| if t not in ('<pad>', '|'): | |
| per_timestep_chars.append(t.lower()) | |
| per_timestep_char_indices.append(idx) | |
| bert_chars = [] | |
| bert_char_indices = [] | |
| for idx, token in enumerate(tokens_bert): | |
| if token in ('[CLS]', '[SEP]'): | |
| continue | |
| token_str = token.replace('##', '') | |
| for c in token_str: | |
| bert_chars.append(c) | |
| bert_char_indices.append(idx) | |
| s = difflib.SequenceMatcher(None, per_timestep_chars, bert_chars) | |
| opcodes = s.get_opcodes() | |
| per_timestep_to_bert_token_idx = {} | |
| for tag, i1, i2, j1, j2 in opcodes: | |
| if tag == 'equal': | |
| for k in range(i2 - i1): | |
| per_timestep_idx = per_timestep_char_indices[i1 + k] | |
| bert_token_idx = bert_char_indices[j1 + k] | |
| per_timestep_to_bert_token_idx[per_timestep_idx] = bert_token_idx | |
| features_per_timestep = [] | |
| check = [] | |
| for i, per_token in enumerate(tokens_per_timestep): | |
| if i == 0: | |
| embedding = all_token_embeddings[0] | |
| check.append("cls") | |
| elif per_token in ('<pad>', '|'): | |
| embedding = torch.zeros(all_token_embeddings.shape[-1]).to(inputs.input_values.device) | |
| check.append(0) | |
| else: | |
| if i in per_timestep_to_bert_token_idx: | |
| bert_idx = per_timestep_to_bert_token_idx[i] | |
| embedding = all_token_embeddings[bert_idx] | |
| check.append(tokens_bert[bert_idx]) | |
| else: | |
| embedding = torch.zeros(all_token_embeddings.shape[-1]).to(inputs.input_values.device) | |
| check.append(0) | |
| features_per_timestep.append(embedding) | |
| features_per_timestep = torch.stack(features_per_timestep) | |
| updated_check = check.copy() | |
| for i in range(len(check)): | |
| if check[i] == 0: | |
| left = i - 1 | |
| right = i + 1 | |
| left_found = False | |
| right_found = False | |
| while left >= 0: | |
| if check[left] != 0: | |
| left_found = True | |
| break | |
| left -= 1 | |
| while right < len(check): | |
| if check[right] != 0: | |
| right_found = True | |
| break | |
| right += 1 | |
| if left_found and right_found: | |
| if (i - left) <= (right - i): | |
| nearest = left | |
| else: | |
| nearest = right | |
| elif left_found: | |
| nearest = left | |
| elif right_found: | |
| nearest = right | |
| else: | |
| continue | |
| updated_check[i] = updated_check[nearest] | |
| features_per_timestep[i] = features_per_timestep[nearest] | |
| features_per_timestep = features_per_timestep.unsqueeze(0) | |
| return transcription, features_per_timestep, all_token_embeddings | |
| class MLP(nn.Module): | |
| def __init__(self, in_dim, hidden_size, out_dim): | |
| super().__init__() | |
| self.mlp = nn.Sequential( | |
| nn.Linear(in_dim, hidden_size), | |
| nn.LeakyReLU(0.2, True), | |
| nn.Linear(hidden_size, out_dim) | |
| ) | |
| def forward(self, inputs): | |
| out = self.mlp(inputs) | |
| return out | |
| class PeriodicPositionalEncoding(nn.Module): | |
| def __init__(self, d_model, dropout=0.1, period=20, max_seq_len=64): | |
| super(PeriodicPositionalEncoding, self).__init__() | |
| self.dropout = nn.Dropout(p=dropout) | |
| pe = torch.zeros(period, d_model) | |
| position = torch.arange(0, period, dtype=torch.float).unsqueeze(1) | |
| div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) | |
| pe[:, 0::2] = torch.sin(position * div_term) | |
| pe[:, 1::2] = torch.cos(position * div_term) | |
| pe = pe.unsqueeze(0) # (1, period, d_model) | |
| repeat_num = (max_seq_len//period) + 1 | |
| pe = pe.repeat(1, repeat_num, 1) # (1, repeat_num, period, d_model) | |
| self.register_buffer('pe', pe) | |
| def forward(self, x): | |
| # print(self.pe.shape, x.shape) | |
| x = x + self.pe[:, :x.size(1), :] | |
| return self.dropout(x) | |
| class CustomMultiheadAttention(nn.Module): | |
| def __init__(self, embed_dim, num_heads): | |
| super(CustomMultiheadAttention, self).__init__() | |
| self.num_heads = num_heads | |
| self.head_dim = embed_dim // num_heads | |
| assert self.head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads" | |
| self.query_proj = nn.Linear(embed_dim, embed_dim) | |
| self.key_proj = nn.Linear(embed_dim, embed_dim) | |
| self.value_proj = nn.Linear(embed_dim, embed_dim) | |
| self.out_proj = nn.Linear(embed_dim, embed_dim) | |
| def forward(self, query, key, value): | |
| batch_size, seq_len, embed_dim = query.size() | |
| # Linear projections | |
| Q = self.query_proj(query).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| K = self.key_proj(key).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| V = self.value_proj(value).view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) | |
| # Scaled dot-product attention | |
| scores = torch.matmul(Q, K.transpose(-2, -1)) / (self.head_dim ** 0.5) | |
| attn_weights = F.softmax(scores, dim=-1) # Shape: (batch_size, num_heads, seq_len, seq_len) | |
| attn_output = torch.matmul(attn_weights, V) | |
| # Concatenate heads | |
| attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, seq_len, embed_dim) | |
| # Apply final linear projection | |
| output = self.out_proj(attn_output) | |
| return output, attn_weights # Return the per-head attention weights | |
| def reinitialize_weights(module): | |
| for submodule in module.modules(): | |
| weight = getattr(submodule, 'weight', None) | |
| if weight is not None and isinstance(weight, torch.Tensor) and weight.dim() >= 2: | |
| torch.nn.init.xavier_uniform_(weight) | |
| print("init") | |
| elif weight is not None and isinstance(weight, torch.Tensor): | |
| torch.nn.init.normal_(weight, mean=0.0, std=0.02) | |
| print("init") | |
| bias = getattr(submodule, 'bias', None) | |
| if bias is not None and isinstance(bias, torch.Tensor): | |
| torch.nn.init.zeros_(bias) | |
| class WrapedMotionCNN(nn.Module): | |
| def __init__(self, args): | |
| super(WrapedMotionCNN, self).__init__() | |
| self.args = args | |
| encoder_layer = nn.TransformerEncoderLayer( | |
| d_model=self.args.motion_f, # This should match the hidden size of the Wav2Vec2 model | |
| nhead=8, # Number of attention heads | |
| dim_feedforward=self.args.hidden_size, # The feedforward network dimension | |
| dropout=0.1, # Dropout rate | |
| batch_first=True | |
| ) | |
| args_top = copy.deepcopy(self.args) | |
| args_top.vae_layer = 3 | |
| args_top.vae_length = self.args.motion_f | |
| args_top.vae_test_dim = self.args.motion_dim | |
| self.feature_extractor = VQEncoderV6(args_top) | |
| args_top = copy.deepcopy(self.args) | |
| args_top.vae_layer = 6 | |
| args_top.vae_length = self.args.motion_f | |
| args_top.vae_test_dim = self.args.motion_dim + self.args.motion_f | |
| self.encoder_cnn = VQEncoderV6(args_top) | |
| self.pos_encoding = PeriodicPositionalEncoding(d_model=self.args.motion_f, period=20, max_seq_len=64, dropout=0.0) | |
| self.encoder_trans = nn.TransformerEncoder(encoder_layer, num_layers=1) # Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').encoder | |
| def forward(self, | |
| inputs, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| mask_time_indices: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None | |
| ): | |
| low_level = self.feature_extractor(inputs) | |
| # print(low_level.shape, inputs.shape) | |
| hidden_states = self.encoder_cnn(torch.cat([low_level.detach(), inputs], dim=-1)) | |
| hidden_states = self.pos_encoding(hidden_states) | |
| hidden_states = self.encoder_trans(hidden_states) | |
| return { | |
| "low_level": low_level, | |
| "high_level": hidden_states | |
| } | |
| class WrapedWav2Vec(nn.Module): | |
| def __init__(self): | |
| super(WrapedWav2Vec, self).__init__() | |
| self.feature_extractor = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_extractor | |
| self.feature_projection = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_projection | |
| self.encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').encoder | |
| # print(self.encoder) | |
| self.encoder.layers = self.encoder.layers[:1] | |
| # print(self.encoder) | |
| self.proj_down = nn.Linear(768,512) | |
| # print(bug) | |
| def forward(self, | |
| inputs, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| mask_time_indices: Optional[torch.FloatTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None | |
| ): | |
| finetune_audio_low = self.feature_extractor(inputs).transpose(1, 2) | |
| hidden_states, _ = self.feature_projection(finetune_audio_low.detach()) | |
| encoder_outputs = self.encoder( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = encoder_outputs[0] | |
| hidden_states = self.proj_down(hidden_states) | |
| # print(hidden_states.shape) | |
| return { | |
| "low_level": finetune_audio_low, | |
| "high_level": hidden_states | |
| } | |
| class JointEmbedding(nn.Module): | |
| def __init__(self, args): | |
| super(JointEmbedding, self).__init__() | |
| self.args = args.model | |
| self.audio_processor = Wav2Vec2Processor.from_pretrained('facebook/wav2vec2-base-960h') | |
| self.audio_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h') | |
| self.config_wav2vec = Wav2Vec2Config.from_pretrained('facebook/wav2vec2-base-960h') | |
| # self.audio_encoder_fintune = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h').feature_extractor | |
| self.audio_encoder_fintune = WrapedWav2Vec() | |
| # print(self.audio_encoder_fintune) | |
| # print(bug) | |
| self.asr = Wav2Vec2ForCTC.from_pretrained('facebook/wav2vec2-base-960h') | |
| self.bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
| self.bert_model = BertModel.from_pretrained('bert-base-uncased') | |
| self.audio_low_mapping = MLP(512+512, self.args.hidden_size, self.args.audio_f) | |
| self.audio_high_mapping = MLP(512+512+512, self.args.hidden_size, self.args.audio_f) | |
| # self.audio_down_proj_1 = nn.Linear(768, 512) | |
| self.audio_down_proj_2 = nn.Linear(768, 512) | |
| self.audio_down_proj_3 = nn.Linear(768, 512) | |
| # self.audio_sa = nn.MultiheadAttention(embed_dim=self.args.audio_f, num_heads=8, batch_first=True) | |
| self.audio_sa = CustomMultiheadAttention(embed_dim=self.args.audio_f, num_heads=8,) | |
| self.motion_encoder_fintune = WrapedMotionCNN(self.args) | |
| self.motion_low_mapping = MLP(self.args.motion_f, self.args.hidden_size, self.args.motion_f) | |
| self.motion_high_mapping = MLP(self.args.motion_f, self.args.hidden_size, self.args.motion_f) | |
| # self.motion_sa = nn.MultiheadAttention(embed_dim=self.args.audio_f, num_heads=8, batch_first=True) | |
| self.motion_sa = CustomMultiheadAttention(embed_dim=self.args.audio_f, num_heads=8,) | |
| self.down_sample = 2 # for downsample 30 fps motion to 15 | |
| self.smplx_model = None | |
| self.get_motion_reps = None | |
| self.audio_to_time_aligned_text_features = audio_to_time_aligned_text_features | |
| self.low_temp = nn.Parameter(torch.tensor(0.07)) | |
| self.low_level_loss_fn = None | |
| self.high_temp = nn.Parameter(torch.tensor(0.07)) | |
| self.high_level_loss_fn = None | |
| def _reset_parameters(self): | |
| nn.init.normal_(self.mask_embeddings, 0, self.args.hidden_size ** -0.5) | |
| def forward(self, in_audio=None, in_motion=None, cached_audio_low=None, cached_audio_high=None, cached_rep15d=None): | |
| # motion feature | |
| if cached_rep15d is not None: | |
| in_motion = cached_rep15d[:,::self.down_sample] | |
| else: | |
| in_motion = self.get_motion_reps(in_motion, self.smplx_model)["rep15d"][:,::self.down_sample] | |
| motion_features = self.motion_encoder_fintune(in_motion) | |
| raw_motion_low = motion_features["low_level"] # self.motion_encoder_low(in_motion) | |
| raw_motion_high = motion_features["high_level"] # self.motion_encoder_high(torch.cat([raw_motion_low.detach(), in_motion], dim=-1)) | |
| motion_low = self.motion_low_mapping(raw_motion_low) | |
| motion_high = self.motion_high_mapping(raw_motion_high) | |
| motion_high_att, motion_high_weight = self.motion_sa(motion_high, motion_high, motion_high) | |
| bs, n, c = motion_high.shape | |
| # print("a:", motion_high_weight[:, :, 0, :].unsqueeze(2).shape, "b:", motion_high.transpose(1, 2).view(bs, 8, c//8, n).shape) | |
| motion_high_att_before_sum = motion_high_weight[:, :, 0, :].unsqueeze(2) * motion_high.transpose(1, 2).view(bs, 8, c//8, n) | |
| motion_high_att_before_sum = motion_high_att_before_sum.reshape(bs, c, n).transpose(1, 2) | |
| motion_low = F.interpolate(motion_low.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) | |
| motion_high_att = F.interpolate(motion_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) | |
| motion_high_att_before_sum = F.interpolate(motion_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) | |
| motion_cls = motion_high_att[:, 0] | |
| # audio feature | |
| if cached_audio_low is not None: | |
| raw_audio_low = cached_audio_low | |
| raw_audio_high = torch.cat([self.audio_down_proj_2(cached_audio_high[:, :, :768]), self.audio_down_proj_3(cached_audio_high[:, :, 768:])], dim=-1) | |
| audio_list = [i.cpu().numpy() for i in in_audio] | |
| inputs = self.audio_processor(audio_list, sampling_rate=16000, return_tensors="pt", padding=True).to(in_audio.device) | |
| finetune_audio = self.audio_encoder_fintune(inputs.input_values) | |
| finetune_audio_low, finetune_audio_high = finetune_audio["low_level"], finetune_audio["high_level"] | |
| diff = raw_audio_low.shape[1] - finetune_audio_low.shape[1] | |
| if diff > 0: | |
| finetune_audio_low = torch.cat([finetune_audio_low, finetune_audio_low[:, -diff:]], dim=1) | |
| diff = raw_audio_high.shape[1] - finetune_audio_high.shape[1] | |
| if diff > 0: | |
| finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1) | |
| raw_audio_low = torch.cat([raw_audio_low, finetune_audio_low], dim=-1) # bs, t, 1024 | |
| else: | |
| print("error! must have cached audio in training") | |
| # print(raw_audio_low.shape, raw_audio_high.shape, "before") | |
| raw_audio_low = F.interpolate(raw_audio_low.transpose(1, 2), scale_factor=30/50, mode='linear', align_corners=True).transpose(1, 2) | |
| raw_audio_high = F.interpolate(raw_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2) | |
| finetune_audio_high = F.interpolate(finetune_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2) | |
| # print(raw_audio_low.shape, raw_audio_high.shape, "after") | |
| audio_low = self.audio_low_mapping(raw_audio_low) | |
| raw_audio_high = torch.cat([finetune_audio_high, raw_audio_high], dim=-1) | |
| # print(finetune_audio_high.shape, raw_audio_high.shape) | |
| audio_high = self.audio_high_mapping(raw_audio_high) | |
| audio_high_att, audio_high_weight = self.audio_sa(audio_high, audio_high, audio_high) | |
| bs, n, c = audio_high.shape | |
| audio_high_att_before_sum = audio_high_weight[:, :, 0, :].unsqueeze(2) * audio_high.transpose(1, 2).view(bs, 8, c//8, n) | |
| audio_high_att_before_sum = audio_high_att_before_sum.reshape(bs, c, n).transpose(1, 2) | |
| audio_high_att = F.interpolate(audio_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) | |
| audio_high_att_before_sum = F.interpolate(audio_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) | |
| audio_cls = audio_high_att[:, 0] | |
| # low_infonce, low_acc = self.low_level_loss_fn(audio_low, motion_low, learned_temp=self.low_temp) | |
| # fix temp to 0.1 is better than learned temp | |
| low_infonce, low_acc = self.low_level_loss_fn(audio_low, motion_low) | |
| high_infonce = self.high_level_loss_fn(audio_cls, motion_cls) | |
| return { | |
| "audio_low":audio_low, | |
| "audio_high":audio_high_att, | |
| "audio_cls":audio_cls, | |
| "audio_high_weight":audio_high_att_before_sum, | |
| "motion_low":motion_low, | |
| "motion_high":motion_high_att, | |
| "motion_cls":motion_cls, | |
| "motion_high_weight":motion_high_att_before_sum, | |
| "low_level_loss": [low_infonce, low_acc], | |
| "high_level_loss": high_infonce | |
| } | |
| def get_audio_features(self, in_audio): | |
| audio_list = [i.cpu().numpy() for i in in_audio] | |
| inputs = self.audio_processor(audio_list, sampling_rate=16000, return_tensors="pt", padding=True).to(in_audio.device) | |
| raw_audio_low = self.audio_encoder.feature_extractor(inputs.input_values).transpose(1, 2) | |
| raw_audio_low = raw_audio_low | |
| finetune_audio = self.audio_encoder_fintune(inputs.input_values) | |
| finetune_audio_low, finetune_audio_high = finetune_audio["low_level"], finetune_audio["high_level"] | |
| diff = raw_audio_low.shape[1] - finetune_audio_low.shape[1] | |
| if diff > 0: | |
| finetune_audio_low = torch.cat([finetune_audio_low, finetune_audio_low[:, -diff:]], dim=1) | |
| raw_audio_low = torch.cat([raw_audio_low, finetune_audio_low], dim=-1) | |
| raw_audio_high = self.audio_encoder(inputs.input_values).last_hidden_state | |
| diff = raw_audio_high.shape[1] - finetune_audio_high.shape[1] | |
| if diff > 0: | |
| finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1) | |
| # print(raw_audio_high.shape, finetune_audio_high.shape) | |
| _, bert_time_aligned_text, _ = audio_to_time_aligned_text_features(inputs, self.audio_processor, self.asr, self.bert_tokenizer, self.bert_model) | |
| raw_audio_high = torch.cat([raw_audio_high, bert_time_aligned_text], dim=2) | |
| raw_audio_high = torch.cat([self.audio_down_proj_2(raw_audio_high[:, :, :768]), self.audio_down_proj_3(raw_audio_high[:, :, 768:])], dim=-1) | |
| raw_audio_low = F.interpolate(raw_audio_low.transpose(1, 2), scale_factor=30/50, mode='linear', align_corners=True).transpose(1, 2) | |
| raw_audio_high = F.interpolate(raw_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2) | |
| finetune_audio_high = F.interpolate(finetune_audio_high.transpose(1, 2), scale_factor=15/50, mode='linear', align_corners=True).transpose(1, 2) | |
| if raw_audio_low.shape[1] % 2 == 1: | |
| raw_audio_low = torch.cat([raw_audio_low, raw_audio_low[:, -1:]], dim=1) | |
| diff = raw_audio_low[:, ::2].shape[1] - raw_audio_high.shape[1] | |
| if diff > 0: | |
| raw_audio_high = torch.cat([raw_audio_high, raw_audio_high[:, -diff:]], dim=1) | |
| finetune_audio_high = torch.cat([finetune_audio_high, finetune_audio_high[:, -diff:]], dim=1) | |
| audio_low = self.audio_low_mapping(raw_audio_low) | |
| # print(audio_low.shape[1]//2, raw_audio_high.shape[1]) | |
| raw_audio_high = torch.cat([finetune_audio_high, raw_audio_high], dim=-1) | |
| audio_high = self.audio_high_mapping(raw_audio_high) | |
| audio_high_att, audio_high_weight = self.audio_sa(audio_high, audio_high, audio_high) | |
| bs, n, c = audio_high.shape | |
| audio_high_att_before_sum = audio_high_weight[:, :, 0, :].unsqueeze(2) * audio_high.transpose(1, 2).view(bs, 8, c//8, n) | |
| audio_high_att_before_sum = audio_high_att_before_sum.reshape(bs, c, n).transpose(1, 2) | |
| audio_high_att = F.interpolate(audio_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) | |
| audio_high_att_before_sum = F.interpolate(audio_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) | |
| audio_cls = audio_high_att[:, 0] | |
| return { | |
| "audio_low":audio_low, | |
| "audio_high":audio_high_att, | |
| "audio_cls":audio_cls, | |
| "audio_high_weight":audio_high_att_before_sum, | |
| } | |
| def get_motion_features(self, in_motion): | |
| original_length = in_motion.shape[1] | |
| in_motion = self.get_motion_reps(in_motion, self.smplx_model)["rep15d"][:,::self.down_sample] | |
| motion_features = self.motion_encoder_fintune(in_motion) | |
| raw_motion_low = motion_features["low_level"] # self.motion_encoder_low(in_motion) | |
| raw_motion_high = motion_features["high_level"] # self.motion_encoder_high(torch.cat([raw_motion_low.detach(), in_motion], dim=-1)) | |
| motion_low = self.motion_low_mapping(raw_motion_low) | |
| motion_high = self.motion_high_mapping(raw_motion_high) | |
| motion_high_att, motion_high_weight = self.motion_sa(motion_high, motion_high, motion_high) | |
| bs, n, c = motion_high.shape | |
| motion_high_att_before_sum = motion_high_weight[:, :, 0, :].unsqueeze(2) * motion_high.transpose(1, 2).view(bs, 8, c//8, n) | |
| motion_high_att_before_sum = motion_high_att_before_sum.reshape(bs, c, n).transpose(1, 2) | |
| motion_low = F.interpolate(motion_low.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) | |
| motion_high_att = F.interpolate(motion_high_att.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) | |
| motion_high_att_before_sum = F.interpolate(motion_high_att_before_sum.transpose(1, 2), scale_factor=2, mode='linear', align_corners=True).transpose(1, 2) | |
| # if motion_low.shape[1] - | |
| motion_low = motion_low[:, :original_length] | |
| motion_high_att = motion_high_att[:, :original_length] | |
| motion_high_att_before_sum = motion_high_att_before_sum[:, :original_length] | |
| motion_cls = motion_high_att[:, 0] | |
| # print(original_length, motion_low.shape, motion_high_att.shape, motion_high_att_before_sum.shape) | |
| return { | |
| "motion_low":motion_low, | |
| "motion_high":motion_high_att, | |
| "motion_cls":motion_cls, | |
| "motion_high_weight":motion_high_att_before_sum, | |
| } | |