Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,345 Bytes
71f5363 7d4ee71 71f5363 7d4ee71 7758b4a ec6ec95 71f5363 7d4ee71 e0ec356 7d4ee71 e0ec356 7d4ee71 e0ec356 7d4ee71 b6713ac 7d4ee71 b6713ac 7d4ee71 e0ec356 7d4ee71 e0ec356 7d4ee71 7758b4a 7d4ee71 b6713ac 7d4ee71 b6713ac 7d4ee71 b6713ac 7d4ee71 b6713ac 7d4ee71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPlusPipeline, FlowMatchEulerDiscreteScheduler
import math
import os
import base64
import json
SYSTEM_PROMPT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
Please strictly follow the rewriting rules below:
## 1. General Principles
- Keep the rewritten prompt **concise and comprehensive**. Avoid overly long sentences and unnecessary descriptive language.
- If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
- Keep the main part of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
- All added objects or modifications must align with the logic and style of the scene in the input images.
- If multiple sub-images are to be generated, describe the content of each sub-image individually.
## 2. Task-Type Handling Rules
### 1. Add, Delete, Replace Tasks
- If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
- If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
> Original: "Add an animal"
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
- Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
- For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
### 2. Text Editing Tasks
- All text content must be enclosed in English double quotes `" "`. Keep the original language of the text, and keep the capitalization.
- Both adding new text and replacing existing text are text replacement tasks, For example:
- Replace "xx" to "yy"
- Replace the mask / bounding box to "yy"
- Replace the visual object to "yy"
- Specify text position, color, and layout only if user has required.
- If font is specified, keep the original language of the font.
### 3. Human Editing Tasks
- Make the smallest changes to the given user's prompt.
- If changes to background, action, expression, camera shot, or ambient lighting are required, please list each modification individually.
- **Edits to makeup or facial features / expression must be subtle, not exaggerated, and must preserve the subject’s identity consistency.**
> Original: "Add eyebrows to the face"
> Rewritten: "Slightly thicken the person’s eyebrows with little change, look natural."
### 4. Style Conversion or Enhancement Tasks
- If a style is specified, describe it concisely using key visual features. For example:
> Original: "Disco style"
> Rewritten: "1970s disco style: flashing lights, disco ball, mirrored walls, vibrant colors"
- For style reference, analyze the original image and extract key characteristics (color, composition, texture, lighting, artistic style, etc.), integrating them into the instruction.
- **Colorization tasks (including old photo restoration) must use the fixed template:**
"Restore and colorize the old photo."
- Clearly specify the object to be modified. For example:
> Original: Modify the subject in Picture 1 to match the style of Picture 2.
> Rewritten: Change the girl in Picture 1 to the ink-wash style of Picture 2 — rendered in black-and-white watercolor with soft color transitions.
### 5. Material Replacement
- Clearly specify the object and the material. For example: "Change the material of the apple to papercut style."
- For text material replacement, use the fixed template:
"Change the material of text "xxxx" to laser style"
### 6. Logo/Pattern Editing
- Material replacement should preserve the original shape and structure as much as possible. For example:
> Original: "Convert to sapphire material"
> Rewritten: "Convert the main subject in the image to sapphire material, preserving similar shape and structure"
- When migrating logos/patterns to new scenes, ensure shape and structure consistency. For example:
> Original: "Migrate the logo in the image to a new scene"
> Rewritten: "Migrate the logo in the image to a new scene, preserving similar shape and structure"
### 7. Multi-Image Tasks
- Rewritten prompts must clearly point out which image’s element is being modified. For example:
> Original: "Replace the subject of picture 1 with the subject of picture 2"
> Rewritten: "Replace the girl of picture 1 with the boy of picture 2, keeping picture 2’s background unchanged"
- For stylization tasks, describe the reference image’s style in the rewritten prompt, while preserving the visual content of the source image.
## 3. Rationale and Logic Check
- Resolve contradictory instructions: e.g., “Remove all trees but keep all trees” requires logical correction.
- Supplement missing critical information: e.g., if position is unspecified, choose a reasonable area based on composition (near subject, blank space, center/edge, etc.).
# Output Format Example
```json
{
"Rewritten": "..."
}
'''
# --- Prompt Enhancement using Hugging Face InferenceClient ---
def polish_prompt_hf(prompt, img):
"""
Rewrites the prompt using a Hugging Face InferenceClient.
"""
# Ensure HF_TOKEN is set
api_key = os.environ.get("HF_TOKEN")
prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
if not api_key:
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
return original_prompt
try:
# Initialize the client
client = InferenceClient(
provider="cerebras",
api_key=api_key,
)
# Format the messages for the chat completions API
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
]
sys_promot = "you are a helpful assistant, you should provide useful answers to users."
messages = [
{"role": "system", "content": sys_promot},
{"role": "user", "content": []}]
for img in img_list:
messages[1]["content"].append(
{"image": f"data:image/png;base64,{encode_image(img)}"})
messages[1]["content"].append({"text": f"{prompt}"})
# Call the API
completion = client.chat.completions.create(
model="Qwen/Qwen3-235B-A22B-Instruct-2507",
messages=messages,
)
# Parse the response
result = completion.choices[0].message.content
# Try to extract JSON if present
if '{"Rewritten"' in result:
try:
# Clean up the response
result = result.replace('```json', '').replace('```', '')
result_json = json.loads(result)
polished_prompt = result_json.get('Rewritten', result)
except:
polished_prompt = result
else:
polished_prompt = result
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during API call to Hugging Face: {e}")
# Fallback to original prompt if enhancement fails
return original_prompt
# def polish_prompt(prompt, img):
# prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
# success=False
# while not success:
# try:
# result = api(prompt, [img])
# # print(f"Result: {result}")
# # print(f"Polished Prompt: {polished_prompt}")
# if isinstance(result, str):
# result = result.replace('```json','')
# result = result.replace('```','')
# result = json.loads(result)
# else:
# result = json.loads(result)
# polished_prompt = result['Rewritten']
# polished_prompt = polished_prompt.strip()
# polished_prompt = polished_prompt.replace("\n", " ")
# success = True
# except Exception as e:
# print(f"[Warning] Error during API call: {e}")
# return polished_prompt
def encode_image(pil_image):
import io
buffered = io.BytesIO()
pil_image.save(buffered, format="PNG")
return base64.b64encode(buffered.getvalue()).decode("utf-8")
# def api(prompt, img_list, model="qwen-vl-max-latest", kwargs={}):
# import dashscope
# api_key = os.environ.get('DASH_API_KEY')
# if not api_key:
# raise EnvironmentError("DASH_API_KEY is not set")
# assert model in ["qwen-vl-max-latest"], f"Not implemented model {model}"
# sys_promot = "you are a helpful assistant, you should provide useful answers to users."
# messages = [
# {"role": "system", "content": sys_promot},
# {"role": "user", "content": []}]
# for img in img_list:
# messages[1]["content"].append(
# {"image": f"data:image/png;base64,{encode_image(img)}"})
# messages[1]["content"].append({"text": f"{prompt}"})
# response_format = kwargs.get('response_format', None)
# response = dashscope.MultiModalConversation.call(
# api_key=api_key,
# model=model, # For example, use qwen-plus here. You can change the model name as needed. Model list: https://help.aliyun.com/zh/model-studio/getting-started/models
# messages=messages,
# result_format='message',
# response_format=response_format,
# )
# if response.status_code == 200:
# return response.output.choices[0].message.content[0]['text']
# else:
# raise Exception(f'Failed to post: {response}')
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Scheduler configuration for Lightning
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
# Initialize scheduler with Lightning config
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
# Load the model pipeline
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
scheduler=scheduler,
torch_dtype=dtype).to(device)
pipe.load_lora_weights(
"lightx2v/Qwen-Image-Lightning",
weight_name="Qwen-Image-Lightning-8steps-V2.0-bf16.safetensors"
)
pipe.fuse_lora()
# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max
# --- Main Inference Function (with hardcoded negative prompt) ---
@spaces.GPU(duration=300)
def infer(
images,
prompt,
seed=42,
randomize_seed=False,
true_guidance_scale=1.0,
num_inference_steps=8,
height=None,
width=None,
rewrite_prompt=True,
num_images_per_prompt=1,
progress=gr.Progress(track_tqdm=True),
):
"""
Generates an image using the local Qwen-Image diffusers pipeline.
"""
# Hardcode the negative prompt as requested
negative_prompt = " "
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Set up the generator for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
# Load input images into PIL Images
pil_images = []
if images is not None:
for item in images:
try:
if isinstance(item[0], Image.Image):
pil_images.append(item[0].convert("RGB"))
elif isinstance(item[0], str):
pil_images.append(Image.open(item[0]).convert("RGB"))
elif hasattr(item, "name"):
pil_images.append(Image.open(item.name).convert("RGB"))
except Exception:
continue
if height==256 and width==256:
height, width = None, None
print(f"Calling pipeline with prompt: '{prompt}'")
print(f"Negative Prompt: '{negative_prompt}'")
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {true_guidance_scale}, Size: {width}x{height}")
if rewrite_prompt and len(pil_images) > 0:
prompt = polish_prompt_hf(prompt, pil_images)
print(f"Rewritten Prompt: {prompt}")
# Generate the image
image = pipe(
image=pil_images if len(pil_images) > 0 else None,
prompt=prompt,
height=height,
width=width,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=num_images_per_prompt,
).images
return image, seed
# --- Examples and UI Layout ---
examples = []
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
#edit_text{margin-top: -62px !important}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<div id="logo-title">
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;">
<h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 96px">Fast, 8-steps with Lightning LoRA</h2>
</div>
""")
gr.Markdown("""
[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series.
This demo uses the [Qwen-Image-Lightning v2](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA for accelerated inference.
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) to run locally with ComfyUI or diffusers.
""")
with gr.Row():
with gr.Column():
input_images = gr.Gallery(label="Input Images",
show_label=False,
type="pil",
interactive=True)
# result = gr.Image(label="Result", show_label=False, type="pil")
result = gr.Gallery(label="Result", show_label=False, type="pil")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
placeholder="describe the edit instruction",
container=False,
)
run_button = gr.Button("Edit!", variant="primary")
with gr.Accordion("Advanced Settings", open=False):
# Negative prompt UI element is removed here
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
true_guidance_scale = gr.Slider(
label="True guidance scale",
minimum=1.0,
maximum=10.0,
step=0.1,
value=1.0
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=40,
step=1,
value=8,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=2048,
step=8,
value=None,
)
width = gr.Slider(
label="Width",
minimum=256,
maximum=2048,
step=8,
value=None,
)
rewrite_prompt = gr.Checkbox(label="Rewrite prompt", value=False)
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_images,
prompt,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
rewrite_prompt,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch() |