Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,9 +15,6 @@ from optimization import optimize_pipeline_
|
|
| 15 |
from PIL import Image
|
| 16 |
import gradio as gr
|
| 17 |
|
| 18 |
-
# ----------------------------------------------------------------------
|
| 19 |
-
# Logging configuration
|
| 20 |
-
# ----------------------------------------------------------------------
|
| 21 |
logging.basicConfig(
|
| 22 |
level=logging.INFO,
|
| 23 |
filename="qwen_image_editor.log",
|
|
@@ -26,9 +23,6 @@ logging.basicConfig(
|
|
| 26 |
)
|
| 27 |
logger = logging.getLogger(__name__)
|
| 28 |
|
| 29 |
-
# ----------------------------------------------------------------------
|
| 30 |
-
# Translation (GPU‑accelerated)
|
| 31 |
-
# ----------------------------------------------------------------------
|
| 32 |
@spaces.GPU
|
| 33 |
def translate_albanian_to_english(text: str, language: str = "en"):
|
| 34 |
"""Translate Albanian text to English using an external HF Space."""
|
|
@@ -52,13 +46,9 @@ def translate_albanian_to_english(text: str, language: str = "en"):
|
|
| 52 |
raise gr.Error("Translation failed. Please try again.")
|
| 53 |
raise gr.Error("Translation failed. Please try again.")
|
| 54 |
|
| 55 |
-
# ----------------------------------------------------------------------
|
| 56 |
-
# Model loading & preparation
|
| 57 |
-
# ----------------------------------------------------------------------
|
| 58 |
dtype = torch.bfloat16
|
| 59 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 60 |
|
| 61 |
-
# Lightning‑optimized scheduler configuration
|
| 62 |
scheduler_cfg = {
|
| 63 |
"base_image_seq_len": 256,
|
| 64 |
"base_shift": math.log(3),
|
|
@@ -77,25 +67,21 @@ scheduler_cfg = {
|
|
| 77 |
}
|
| 78 |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_cfg)
|
| 79 |
|
| 80 |
-
# Load Qwen‑Image‑Edit pipeline
|
| 81 |
pipe = QwenImageEditPlusPipeline.from_pretrained(
|
| 82 |
"Qwen/Qwen-Image-Edit-2509",
|
| 83 |
scheduler=scheduler,
|
| 84 |
torch_dtype=dtype,
|
| 85 |
).to(device)
|
| 86 |
|
| 87 |
-
# Load + fuse Lightning LoRA
|
| 88 |
pipe.load_lora_weights(
|
| 89 |
"lightx2v/Qwen-Image-Lightning",
|
| 90 |
weight_name="Qwen-Image-Lightning-4steps-V2.0.safetensors",
|
| 91 |
)
|
| 92 |
pipe.fuse_lora()
|
| 93 |
|
| 94 |
-
# Replace transformer class & set custom attention processor
|
| 95 |
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 96 |
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 97 |
|
| 98 |
-
# Ahead‑of‑time compilation / optimization
|
| 99 |
optimize_pipeline_(
|
| 100 |
pipe,
|
| 101 |
image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))],
|
|
@@ -105,22 +91,15 @@ optimize_pipeline_(
|
|
| 105 |
MAX_SEED = np.iinfo(np.int32).max
|
| 106 |
QUALITY_PROMPT = ", high quality, detailed, vibrant, professional lighting"
|
| 107 |
|
| 108 |
-
# ----------------------------------------------------------------------
|
| 109 |
-
# Inference (GPU‑accelerated, duration hint for Spaces)
|
| 110 |
-
# ----------------------------------------------------------------------
|
| 111 |
@spaces.GPU(duration=40)
|
| 112 |
def infer(image, prompt):
|
| 113 |
-
"""
|
| 114 |
-
Generate an edited image from the input image and prompt.
|
| 115 |
-
"""
|
| 116 |
negative_prompt = ""
|
| 117 |
seed = random.randint(0, MAX_SEED)
|
| 118 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 119 |
|
| 120 |
-
# Translate prompt + quality suffix
|
| 121 |
prompt_en = translate_albanian_to_english(prompt.strip(), language="en") + QUALITY_PROMPT
|
| 122 |
|
| 123 |
-
# Load input image as PIL.Image (if any)
|
| 124 |
pil_img = None
|
| 125 |
if image is not None:
|
| 126 |
if isinstance(image, Image.Image):
|
|
@@ -130,7 +109,6 @@ def infer(image, prompt):
|
|
| 130 |
elif hasattr(image, "name"):
|
| 131 |
pil_img = Image.open(image.name).convert("RGB")
|
| 132 |
|
| 133 |
-
# Run pipeline
|
| 134 |
output = pipe(
|
| 135 |
image=[pil_img] if pil_img is not None else None,
|
| 136 |
prompt=prompt_en,
|
|
@@ -145,14 +123,8 @@ def infer(image, prompt):
|
|
| 145 |
|
| 146 |
return output[0] if output else None
|
| 147 |
|
| 148 |
-
# ----------------------------------------------------------------------
|
| 149 |
-
# Gradio UI
|
| 150 |
-
# ----------------------------------------------------------------------
|
| 151 |
def create_demo():
|
| 152 |
with gr.Blocks(css="", title="Qwen Image Editor") as demo:
|
| 153 |
-
# --------------------------------------------------------------
|
| 154 |
-
# Custom HTML + full CSS (including top gap) + JS
|
| 155 |
-
# --------------------------------------------------------------
|
| 156 |
gr.HTML(
|
| 157 |
"""
|
| 158 |
<style>
|
|
@@ -261,7 +233,6 @@ def create_demo():
|
|
| 261 |
box-sizing:border-box !important;
|
| 262 |
display:block !important;
|
| 263 |
}
|
| 264 |
-
/* Hide upload / toolbar elements */
|
| 265 |
.image-container[aria-label="Input Image"] .file-upload,
|
| 266 |
.image-container[aria-label="Input Image"] .file-preview,
|
| 267 |
.image-container[aria-label="Input Image"] .image-actions,
|
|
@@ -288,7 +259,6 @@ def create_demo():
|
|
| 288 |
div[aria-label="Result Image"] .gr-button{
|
| 289 |
display:none !important;
|
| 290 |
}
|
| 291 |
-
/* Processing overlay for Result Image */
|
| 292 |
.image-container[aria-label="Result Image"].processing{
|
| 293 |
background:#000000 !important;
|
| 294 |
position:relative !important;
|
|
@@ -393,22 +363,14 @@ def create_demo():
|
|
| 393 |
}
|
| 394 |
</style>
|
| 395 |
<script>
|
| 396 |
-
// --------------------------------------------------------------
|
| 397 |
-
// Enforce loading only under /spaceishere (or any sub‑path)
|
| 398 |
-
// --------------------------------------------------------------
|
| 399 |
const allowedPath = /^\\/spaceishere(\\/.*)?$/;
|
| 400 |
if (!allowedPath.test(window.location.pathname)) {
|
| 401 |
document.body.innerHTML = '<h1 style="color:#ef4444;font-family:sans-serif;text-align:center;margin-top:100px;">500 Internal Server Error</h1>';
|
| 402 |
throw new Error('500');
|
| 403 |
}
|
| 404 |
-
|
| 405 |
-
// --------------------------------------------------------------
|
| 406 |
-
// UI behaviour: processing overlay & hide progress elements
|
| 407 |
-
// --------------------------------------------------------------
|
| 408 |
document.addEventListener('DOMContentLoaded', () => {
|
| 409 |
const generateBtn = document.querySelector('.gr-button-primary');
|
| 410 |
const resultContainer = document.querySelector('.image-container[aria-label="Result Image"]');
|
| 411 |
-
|
| 412 |
if (generateBtn && resultContainer) {
|
| 413 |
generateBtn.addEventListener('click', () => {
|
| 414 |
resultContainer.classList.add('processing');
|
|
@@ -416,7 +378,6 @@ def create_demo():
|
|
| 416 |
if (child.tagName !== 'IMG') child.style.display = 'none';
|
| 417 |
});
|
| 418 |
});
|
| 419 |
-
|
| 420 |
const imgObserver = new MutationObserver(muts => {
|
| 421 |
muts.forEach(m => {
|
| 422 |
m.addedNodes.forEach(node => {
|
|
@@ -429,8 +390,6 @@ def create_demo():
|
|
| 429 |
});
|
| 430 |
imgObserver.observe(resultContainer, { childList: true, subtree: true });
|
| 431 |
}
|
| 432 |
-
|
| 433 |
-
// Periodically purge any stray progress elements
|
| 434 |
setInterval(() => {
|
| 435 |
document.querySelectorAll('.progress-text,.gr-progress,[class*="progress"]').forEach(el => el.remove());
|
| 436 |
}, 500);
|
|
@@ -438,10 +397,6 @@ def create_demo():
|
|
| 438 |
</script>
|
| 439 |
"""
|
| 440 |
)
|
| 441 |
-
|
| 442 |
-
# --------------------------------------------------------------
|
| 443 |
-
# Layout
|
| 444 |
-
# --------------------------------------------------------------
|
| 445 |
with gr.Row(elem_id="general_items"):
|
| 446 |
gr.Markdown("# Image Edit")
|
| 447 |
gr.Markdown("Edit your images with prompt descriptions", elem_id="subtitle")
|
|
@@ -473,18 +428,10 @@ def create_demo():
|
|
| 473 |
show_share_button=False,
|
| 474 |
elem_classes=["gradio-component", "image-container"],
|
| 475 |
)
|
| 476 |
-
|
| 477 |
-
# --------------------------------------------------------------
|
| 478 |
-
# Event bindings
|
| 479 |
-
# --------------------------------------------------------------
|
| 480 |
run_button.click(fn=infer, inputs=[input_image, prompt], outputs=[result_image])
|
| 481 |
prompt.submit(fn=infer, inputs=[input_image, prompt], outputs=[result_image])
|
| 482 |
-
|
| 483 |
return demo
|
| 484 |
|
| 485 |
-
# ----------------------------------------------------------------------
|
| 486 |
-
# FastAPI app with strict routing (only /spaceishere allowed)
|
| 487 |
-
# ----------------------------------------------------------------------
|
| 488 |
app = FastAPI()
|
| 489 |
demo = create_demo()
|
| 490 |
app.mount("/spaceishere", demo.app)
|
|
@@ -493,9 +440,6 @@ app.mount("/spaceishere", demo.app)
|
|
| 493 |
async def catch_all(path: str):
|
| 494 |
raise HTTPException(status_code=500, detail="Internal Server Error")
|
| 495 |
|
| 496 |
-
# ----------------------------------------------------------------------
|
| 497 |
-
# Entry point
|
| 498 |
-
# ----------------------------------------------------------------------
|
| 499 |
if __name__ == "__main__":
|
| 500 |
logger.info(f"Gradio version: {gr.__version__}")
|
| 501 |
demo.queue().launch(share=True)
|
|
|
|
| 15 |
from PIL import Image
|
| 16 |
import gradio as gr
|
| 17 |
|
|
|
|
|
|
|
|
|
|
| 18 |
logging.basicConfig(
|
| 19 |
level=logging.INFO,
|
| 20 |
filename="qwen_image_editor.log",
|
|
|
|
| 23 |
)
|
| 24 |
logger = logging.getLogger(__name__)
|
| 25 |
|
|
|
|
|
|
|
|
|
|
| 26 |
@spaces.GPU
|
| 27 |
def translate_albanian_to_english(text: str, language: str = "en"):
|
| 28 |
"""Translate Albanian text to English using an external HF Space."""
|
|
|
|
| 46 |
raise gr.Error("Translation failed. Please try again.")
|
| 47 |
raise gr.Error("Translation failed. Please try again.")
|
| 48 |
|
|
|
|
|
|
|
|
|
|
| 49 |
dtype = torch.bfloat16
|
| 50 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 51 |
|
|
|
|
| 52 |
scheduler_cfg = {
|
| 53 |
"base_image_seq_len": 256,
|
| 54 |
"base_shift": math.log(3),
|
|
|
|
| 67 |
}
|
| 68 |
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_cfg)
|
| 69 |
|
|
|
|
| 70 |
pipe = QwenImageEditPlusPipeline.from_pretrained(
|
| 71 |
"Qwen/Qwen-Image-Edit-2509",
|
| 72 |
scheduler=scheduler,
|
| 73 |
torch_dtype=dtype,
|
| 74 |
).to(device)
|
| 75 |
|
|
|
|
| 76 |
pipe.load_lora_weights(
|
| 77 |
"lightx2v/Qwen-Image-Lightning",
|
| 78 |
weight_name="Qwen-Image-Lightning-4steps-V2.0.safetensors",
|
| 79 |
)
|
| 80 |
pipe.fuse_lora()
|
| 81 |
|
|
|
|
| 82 |
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
| 83 |
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
| 84 |
|
|
|
|
| 85 |
optimize_pipeline_(
|
| 86 |
pipe,
|
| 87 |
image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))],
|
|
|
|
| 91 |
MAX_SEED = np.iinfo(np.int32).max
|
| 92 |
QUALITY_PROMPT = ", high quality, detailed, vibrant, professional lighting"
|
| 93 |
|
|
|
|
|
|
|
|
|
|
| 94 |
@spaces.GPU(duration=40)
|
| 95 |
def infer(image, prompt):
|
| 96 |
+
"""Generate an edited image from the input image and prompt."""
|
|
|
|
|
|
|
| 97 |
negative_prompt = ""
|
| 98 |
seed = random.randint(0, MAX_SEED)
|
| 99 |
generator = torch.Generator(device=device).manual_seed(seed)
|
| 100 |
|
|
|
|
| 101 |
prompt_en = translate_albanian_to_english(prompt.strip(), language="en") + QUALITY_PROMPT
|
| 102 |
|
|
|
|
| 103 |
pil_img = None
|
| 104 |
if image is not None:
|
| 105 |
if isinstance(image, Image.Image):
|
|
|
|
| 109 |
elif hasattr(image, "name"):
|
| 110 |
pil_img = Image.open(image.name).convert("RGB")
|
| 111 |
|
|
|
|
| 112 |
output = pipe(
|
| 113 |
image=[pil_img] if pil_img is not None else None,
|
| 114 |
prompt=prompt_en,
|
|
|
|
| 123 |
|
| 124 |
return output[0] if output else None
|
| 125 |
|
|
|
|
|
|
|
|
|
|
| 126 |
def create_demo():
|
| 127 |
with gr.Blocks(css="", title="Qwen Image Editor") as demo:
|
|
|
|
|
|
|
|
|
|
| 128 |
gr.HTML(
|
| 129 |
"""
|
| 130 |
<style>
|
|
|
|
| 233 |
box-sizing:border-box !important;
|
| 234 |
display:block !important;
|
| 235 |
}
|
|
|
|
| 236 |
.image-container[aria-label="Input Image"] .file-upload,
|
| 237 |
.image-container[aria-label="Input Image"] .file-preview,
|
| 238 |
.image-container[aria-label="Input Image"] .image-actions,
|
|
|
|
| 259 |
div[aria-label="Result Image"] .gr-button{
|
| 260 |
display:none !important;
|
| 261 |
}
|
|
|
|
| 262 |
.image-container[aria-label="Result Image"].processing{
|
| 263 |
background:#000000 !important;
|
| 264 |
position:relative !important;
|
|
|
|
| 363 |
}
|
| 364 |
</style>
|
| 365 |
<script>
|
|
|
|
|
|
|
|
|
|
| 366 |
const allowedPath = /^\\/spaceishere(\\/.*)?$/;
|
| 367 |
if (!allowedPath.test(window.location.pathname)) {
|
| 368 |
document.body.innerHTML = '<h1 style="color:#ef4444;font-family:sans-serif;text-align:center;margin-top:100px;">500 Internal Server Error</h1>';
|
| 369 |
throw new Error('500');
|
| 370 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
document.addEventListener('DOMContentLoaded', () => {
|
| 372 |
const generateBtn = document.querySelector('.gr-button-primary');
|
| 373 |
const resultContainer = document.querySelector('.image-container[aria-label="Result Image"]');
|
|
|
|
| 374 |
if (generateBtn && resultContainer) {
|
| 375 |
generateBtn.addEventListener('click', () => {
|
| 376 |
resultContainer.classList.add('processing');
|
|
|
|
| 378 |
if (child.tagName !== 'IMG') child.style.display = 'none';
|
| 379 |
});
|
| 380 |
});
|
|
|
|
| 381 |
const imgObserver = new MutationObserver(muts => {
|
| 382 |
muts.forEach(m => {
|
| 383 |
m.addedNodes.forEach(node => {
|
|
|
|
| 390 |
});
|
| 391 |
imgObserver.observe(resultContainer, { childList: true, subtree: true });
|
| 392 |
}
|
|
|
|
|
|
|
| 393 |
setInterval(() => {
|
| 394 |
document.querySelectorAll('.progress-text,.gr-progress,[class*="progress"]').forEach(el => el.remove());
|
| 395 |
}, 500);
|
|
|
|
| 397 |
</script>
|
| 398 |
"""
|
| 399 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
with gr.Row(elem_id="general_items"):
|
| 401 |
gr.Markdown("# Image Edit")
|
| 402 |
gr.Markdown("Edit your images with prompt descriptions", elem_id="subtitle")
|
|
|
|
| 428 |
show_share_button=False,
|
| 429 |
elem_classes=["gradio-component", "image-container"],
|
| 430 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
run_button.click(fn=infer, inputs=[input_image, prompt], outputs=[result_image])
|
| 432 |
prompt.submit(fn=infer, inputs=[input_image, prompt], outputs=[result_image])
|
|
|
|
| 433 |
return demo
|
| 434 |
|
|
|
|
|
|
|
|
|
|
| 435 |
app = FastAPI()
|
| 436 |
demo = create_demo()
|
| 437 |
app.mount("/spaceishere", demo.app)
|
|
|
|
| 440 |
async def catch_all(path: str):
|
| 441 |
raise HTTPException(status_code=500, detail="Internal Server Error")
|
| 442 |
|
|
|
|
|
|
|
|
|
|
| 443 |
if __name__ == "__main__":
|
| 444 |
logger.info(f"Gradio version: {gr.__version__}")
|
| 445 |
demo.queue().launch(share=True)
|