Spaces:
Runtime error
Runtime error
File size: 6,439 Bytes
6001e3c 6bc9074 e845246 8ee496d 922fdb6 6bc9074 e6e9d2c 6001e3c e6e9d2c 8ee496d e845246 6bc9074 922fdb6 e6e9d2c 922fdb6 223ef25 e6e9d2c 223ef25 5de7ece e6e9d2c 922fdb6 e6e9d2c 922fdb6 8c7013a e6e9d2c d2655b2 e6e9d2c d2655b2 e6e9d2c d2655b2 e6e9d2c d2655b2 e6e9d2c 8c7013a e6e9d2c 6bc9074 e6e9d2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import gradio as gr
import spaces
import torch
import os
from compel import Compel, ReturnedEmbeddingsType
from diffusers import DiffusionPipeline
import requests
# Model setup
model_name = os.environ.get('MODEL_NAME', 'UnfilteredAI/NSFW-gen-v2')
pipe = DiffusionPipeline.from_pretrained(
model_name,
torch_dtype=torch.float16
)
pipe.to('cuda')
compel = Compel(
tokenizer=[pipe.tokenizer, pipe.tokenizer_2],
text_encoder=[pipe.text_encoder, pipe.text_encoder_2],
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED,
requires_pooled=[False, True]
)
# Translation function
@spaces.GPU
def translate_albanian_to_english(text):
if not text.strip():
return ""
for attempt in range(2):
try:
response = requests.post(
"https://hal1993-mdftranslation1234567890abcdef1234567890-fc073a6.hf.space/v1/translate",
json={"from_language": "sq", "to_language": "en", "input_text": text},
headers={"accept": "application/json", "Content-Type": "application/json"},
timeout=5
)
response.raise_for_status()
translated = response.json().get("translate", "")
return translated
except Exception as e:
if attempt == 1:
raise gr.Error(f"Përkthimi dështoi: {str(e)}")
raise gr.Error("Përkthimi dështoi. Ju lutem provoni përsëri.")
# Aspect ratio function
def update_aspect_ratio(ratio):
if ratio == "1:1":
return 1024, 1024
elif ratio == "9:16":
return 576, 1024 # 1024 * 9/16 = 576
elif ratio == "16:9":
return 1024, 576 # 1024 * 9/16 = 576
return 1024, 1024
@spaces.GPU(duration=120)
def generate(prompt, negative_prompt, num_inference_steps, guidance_scale, width, height, num_samples, progress=gr.Progress(track_tqdm=True)):
# Translate Albanian prompt to English
final_prompt = translate_albanian_to_english(prompt.strip()) if prompt.strip() else ""
# Use Compel for prompt embeddings
embeds, pooled = compel(final_prompt)
neg_embeds, neg_pooled = compel(negative_prompt)
# Run pipeline
images = pipe(
prompt_embeds=embeds,
pooled_prompt_embeds=pooled,
negative_prompt_embeds=neg_embeds,
negative_pooled_prompt_embeds=neg_pooled,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
width=width,
height=height,
num_images_per_prompt=num_samples
).images
# Return single image
return images[0]
# Gradio interface
def create_demo():
with gr.Blocks() as demo:
# CSS for layout, 320px gap, and download button scaling
gr.HTML("""
<style>
body::before {
content: "";
display: block;
height: 320px;
background-color: var(--body-background-fill);
}
button[aria-label="Fullscreen"], button[aria-label="Fullscreen"]:hover {
display: none !important;
visibility: hidden !important;
opacity: 0 !important;
pointer-events: none !important;
}
button[aria-label="Share"], button[aria-label="Share"]:hover {
display: none !important;
}
button[aria-label="Download"] {
transform: scale(3);
transform-origin: top right;
margin: 0 !important;
padding: 6px !important;
}
</style>
""")
gr.Markdown("# Krijo Imazhe")
gr.Markdown("Gjenero imazhe të reja nga përshkrimin yt me fuqinë e inteligjencës artificiale.")
with gr.Column():
prompt = gr.Textbox(
label="Përshkrimi",
placeholder="Shkruani përshkrimin këtu",
lines=3
)
aspect_ratio = gr.Radio(
label="Raporti i fotos",
choices=["9:16", "1:1", "16:9"],
value="1:1"
)
generate_button = gr.Button(value="Gjenero")
# Hidden components for processing
negative_prompt = gr.Textbox(
value="(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn, (deformed | distorted | disfigured:1.3), bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers:1.4, disconnected limbs, blurry, amputation.",
visible=False
)
num_inference_steps = gr.Slider(
value=60,
minimum=1,
maximum=100,
step=1,
visible=False
)
guidance_scale = gr.Slider(
value=7,
minimum=1,
maximum=20,
step=0.1,
visible=False
)
width_slider = gr.Slider(
value=1024,
minimum=256,
maximum=1536,
step=8,
visible=False
)
height_slider = gr.Slider(
value=1024,
minimum=256,
maximum=1536,
step=8,
visible=False
)
num_samples = gr.Slider(
value=1,
minimum=1,
maximum=1,
step=1,
visible=False
)
with gr.Row():
result_image = gr.Image(
label="Imazhi i Gjeneruar",
interactive=False
)
# Update hidden sliders based on aspect ratio
aspect_ratio.change(
fn=update_aspect_ratio,
inputs=[aspect_ratio],
outputs=[width_slider, height_slider],
queue=False
)
# Bind the generate button
inputs = [
prompt, negative_prompt, num_inference_steps, guidance_scale,
width_slider, height_slider, num_samples
]
generate_button.click(
fn=generate,
inputs=inputs,
outputs=[result_image],
show_progress="full"
)
return demo
if __name__ == "__main__":
print(f"Gradio version: {gr.__version__}")
app = create_demo()
app.queue(max_size=12).launch(server_name='0.0.0.0') |