Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import spaces
|
| 2 |
import torch
|
| 3 |
import requests
|
|
@@ -19,7 +22,7 @@ from torchao.quantization import Int8WeightOnlyConfig
|
|
| 19 |
import aoti
|
| 20 |
|
| 21 |
# ------------------------------------------------------------
|
| 22 |
-
#
|
| 23 |
# ------------------------------------------------------------
|
| 24 |
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
| 25 |
|
|
@@ -45,7 +48,7 @@ default_negative_prompt = (
|
|
| 45 |
)
|
| 46 |
|
| 47 |
# ------------------------------------------------------------
|
| 48 |
-
#
|
| 49 |
# ------------------------------------------------------------
|
| 50 |
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 51 |
MODEL_ID,
|
|
@@ -70,6 +73,7 @@ pipe.load_lora_weights(
|
|
| 70 |
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
| 71 |
adapter_name="lightx2v",
|
| 72 |
)
|
|
|
|
| 73 |
kwargs_lora = {"load_into_transformer_2": True}
|
| 74 |
pipe.load_lora_weights(
|
| 75 |
"Kijai/WanVideo_comfy",
|
|
@@ -77,6 +81,7 @@ pipe.load_lora_weights(
|
|
| 77 |
adapter_name="lightx2v_2",
|
| 78 |
**kwargs_lora,
|
| 79 |
)
|
|
|
|
| 80 |
pipe.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1.0, 1.0])
|
| 81 |
pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3.0, components=["transformer"])
|
| 82 |
pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1.0, components=["transformer_2"])
|
|
@@ -91,7 +96,7 @@ aoti.aoti_blocks_load(pipe.transformer, "zerogpu-aoti/Wan2", variant="fp8da")
|
|
| 91 |
aoti.aoti_blocks_load(pipe.transformer_2, "zerogpu-aoti/Wan2", variant="fp8da")
|
| 92 |
|
| 93 |
# ------------------------------------------------------------
|
| 94 |
-
#
|
| 95 |
# ------------------------------------------------------------
|
| 96 |
def resize_image(image: Image.Image) -> Image.Image:
|
| 97 |
"""Resize / crop the input image so the model receives a valid size."""
|
|
@@ -117,6 +122,7 @@ def resize_image(image: Image.Image) -> Image.Image:
|
|
| 117 |
top = (height - crop_h) // 2
|
| 118 |
img = image.crop((0, top, width, top + crop_h))
|
| 119 |
else:
|
|
|
|
| 120 |
if width > height: # landscape
|
| 121 |
target_w = MAX_DIM
|
| 122 |
target_h = int(round(target_w / aspect_ratio))
|
|
@@ -125,6 +131,7 @@ def resize_image(image: Image.Image) -> Image.Image:
|
|
| 125 |
target_w = int(round(target_h * aspect_ratio))
|
| 126 |
img = image
|
| 127 |
|
|
|
|
| 128 |
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
|
| 129 |
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
|
| 130 |
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
|
|
@@ -134,6 +141,7 @@ def resize_image(image: Image.Image) -> Image.Image:
|
|
| 134 |
|
| 135 |
|
| 136 |
def get_num_frames(duration_seconds: float) -> int:
|
|
|
|
| 137 |
return 1 + int(
|
| 138 |
np.clip(
|
| 139 |
int(round(duration_seconds * FIXED_FPS)),
|
|
@@ -153,9 +161,12 @@ def get_duration(
|
|
| 153 |
guidance_scale_2,
|
| 154 |
seed,
|
| 155 |
randomize_seed,
|
| 156 |
-
progress,
|
| 157 |
):
|
| 158 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 159 |
BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
|
| 160 |
BASE_STEP_DURATION = 15
|
| 161 |
|
|
@@ -165,34 +176,10 @@ def get_duration(
|
|
| 165 |
step_duration = BASE_STEP_DURATION * factor ** 1.5
|
| 166 |
est = 10 + int(steps) * step_duration
|
| 167 |
|
| 168 |
-
#
|
| 169 |
return min(est, 30)
|
| 170 |
|
| 171 |
|
| 172 |
-
@spaces.GPU
|
| 173 |
-
def translate_albanian_to_english(text):
|
| 174 |
-
"""Optional helper – not used in the UI but kept unchanged."""
|
| 175 |
-
if not text.strip():
|
| 176 |
-
raise gr.Error("Please enter a description.")
|
| 177 |
-
for attempt in range(2):
|
| 178 |
-
try:
|
| 179 |
-
resp = requests.post(
|
| 180 |
-
"https://hal1993-mdftranslation1234567890abcdef1234567890-fc073a6.hf.space/v1/translate",
|
| 181 |
-
json={"from_language": "sq", "to_language": "en", "input_text": text},
|
| 182 |
-
headers={"accept": "application/json", "Content-Type": "application/json"},
|
| 183 |
-
timeout=5,
|
| 184 |
-
)
|
| 185 |
-
resp.raise_for_status()
|
| 186 |
-
return resp.json().get("translate", "")
|
| 187 |
-
except Exception as e:
|
| 188 |
-
if attempt == 1:
|
| 189 |
-
raise gr.Error("Translation failed. Please try again.") from e
|
| 190 |
-
raise gr.Error("Translation failed. Please try again.")
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
# ------------------------------------------------------------
|
| 194 |
-
# -------------------------- MAIN FUNCTION ---------------------
|
| 195 |
-
# ------------------------------------------------------------
|
| 196 |
@spaces.GPU(duration=get_duration)
|
| 197 |
def generate_video(
|
| 198 |
input_image,
|
|
@@ -204,9 +191,12 @@ def generate_video(
|
|
| 204 |
guidance_scale_2=1.5,
|
| 205 |
seed=42,
|
| 206 |
randomize_seed=False,
|
| 207 |
-
progress=
|
| 208 |
):
|
| 209 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 210 |
if input_image is None:
|
| 211 |
raise gr.Error("Please upload an input image.")
|
| 212 |
|
|
@@ -247,12 +237,12 @@ def generate_video(
|
|
| 247 |
|
| 248 |
|
| 249 |
# ------------------------------------------------------------
|
| 250 |
-
#
|
| 251 |
# ------------------------------------------------------------
|
| 252 |
def create_demo():
|
| 253 |
with gr.Blocks(css="", title="Fast Image to Video") as demo:
|
| 254 |
# -----------------------------------------------------------------
|
| 255 |
-
# 500‑error guard –
|
| 256 |
# -----------------------------------------------------------------
|
| 257 |
gr.HTML(
|
| 258 |
"""
|
|
@@ -266,7 +256,7 @@ def create_demo():
|
|
| 266 |
)
|
| 267 |
|
| 268 |
# -----------------------------------------------------------------
|
| 269 |
-
#
|
| 270 |
# -----------------------------------------------------------------
|
| 271 |
gr.HTML(
|
| 272 |
"""
|
|
@@ -276,7 +266,6 @@ def create_demo():
|
|
| 276 |
@keyframes glow-hover {0%{box-shadow:0 0 20px rgba(0,255,128,0.7);}50%{box-shadow:0 0 20px rgba(0,255,128,0.9);}100%{box-shadow:0 0 20px rgba(0,255,128,0.7);}}
|
| 277 |
@keyframes slide {0%{background-position:0% 50%;}50%{background-position:100% 50%;}100%{background-position:0% 50%;}}
|
| 278 |
@keyframes pulse {0%,100%{opacity:0.7;}50%{opacity:1;}}
|
| 279 |
-
@keyframes typewriter {0%{width:0;}100%{width:100%;}}
|
| 280 |
body{
|
| 281 |
background:#000 !important;
|
| 282 |
color:#FFF !important;
|
|
@@ -295,7 +284,7 @@ def create_demo():
|
|
| 295 |
body::before{
|
| 296 |
content:"";
|
| 297 |
display:block;
|
| 298 |
-
height:600px; /* <--
|
| 299 |
background:#000 !important;
|
| 300 |
}
|
| 301 |
.gr-blocks,.container{
|
|
@@ -378,7 +367,7 @@ def create_demo():
|
|
| 378 |
box-sizing:border-box !important;
|
| 379 |
display:block !important;
|
| 380 |
}
|
| 381 |
-
/*
|
| 382 |
.image-container[aria-label="Generated Video"] .progress-text,
|
| 383 |
.image-container[aria-label="Generated Video"] .gr-progress,
|
| 384 |
.image-container[aria-label="Generated Video"] .gr-progress-bar,
|
|
@@ -433,23 +422,9 @@ def create_demo():
|
|
| 433 |
.image-container[aria-label="Input Image"] .file-upload,
|
| 434 |
.image-container[aria-label="Input Image"] .file-preview,
|
| 435 |
.image-container[aria-label="Input Image"] .image-actions,
|
| 436 |
-
.image-container[aria-label="Input Image"] .gr-file-upload,
|
| 437 |
-
.image-container[aria-label="Input Image"] .gr-file,
|
| 438 |
-
.image-container[aria-label="Input Image"] .gr-actions,
|
| 439 |
-
.image-container[aria-label="Input Image"] .gr-upload-button,
|
| 440 |
-
.image-container[aria-label="Input Image"] .gr-image-toolbar,
|
| 441 |
-
.image-container[aria-label="Input Image"] .gr-file-actions,
|
| 442 |
-
.image-container[aria-label="Input Image"] .gr-upload-options,
|
| 443 |
.image-container[aria-label="Generated Video"] .file-upload,
|
| 444 |
.image-container[aria-label="Generated Video"] .file-preview,
|
| 445 |
-
.image-container[aria-label="Generated Video"] .image-actions
|
| 446 |
-
.image-container[aria-label="Generated Video"] .gr-file-upload,
|
| 447 |
-
.image-container[aria-label="Generated Video"] .gr-file,
|
| 448 |
-
.image-container[aria-label="Generated Video"] .gr-actions,
|
| 449 |
-
.image-container[aria-label="Generated Video"] .gr-upload-button,
|
| 450 |
-
.image-container[aria-label="Generated Video"] .gr-image-toolbar,
|
| 451 |
-
.image-container[aria-label="Generated Video"] .gr-file-actions,
|
| 452 |
-
.image-container[aria-label="Generated Video"] .gr-upload-options{
|
| 453 |
display:none!important;
|
| 454 |
}
|
| 455 |
.image-container[aria-label="Generated Video"].processing{
|
|
@@ -483,10 +458,6 @@ def create_demo():
|
|
| 483 |
.image-container[aria-label="Generated Video"].processing *{
|
| 484 |
display:none!important;
|
| 485 |
}
|
| 486 |
-
.image-container[aria-label="Generated Video"].processing video,
|
| 487 |
-
.image-container[aria-label="Generated Video"].processing img{
|
| 488 |
-
display:none!important;
|
| 489 |
-
}
|
| 490 |
input,textarea,.gr-dropdown,.gr-dropdown select{
|
| 491 |
background:#000!important;
|
| 492 |
color:#FFF!important;
|
|
@@ -497,10 +468,6 @@ def create_demo():
|
|
| 497 |
max-width:100vw!important;
|
| 498 |
box-sizing:border-box!important;
|
| 499 |
}
|
| 500 |
-
input:hover,textarea:hover,.gr-dropdown:hover,.gr-dropdown select:hover{
|
| 501 |
-
box-shadow:0 0 8px rgba(255,255,255,0.3)!important;
|
| 502 |
-
transition:box-shadow .3s;
|
| 503 |
-
}
|
| 504 |
.gr-button-primary{
|
| 505 |
background:linear-gradient(90deg,rgba(0,255,128,0.3),rgba(0,200,100,0.3),rgba(0,255,128,0.3))!important;
|
| 506 |
background-size:200% 100%;
|
|
@@ -561,10 +528,7 @@ def create_demo():
|
|
| 561 |
.gr-button-primary:hover{
|
| 562 |
box-shadow:0 0 12px rgba(0,255,128,0.9)!important;
|
| 563 |
}
|
| 564 |
-
.image-container{
|
| 565 |
-
min-height:300px;
|
| 566 |
-
box-shadow:0 0 8px rgba(255,255,255,0.3)!important;
|
| 567 |
-
}
|
| 568 |
.image-container[aria-label="Generated Video"].processing::before{
|
| 569 |
font-size:1.2rem!important;
|
| 570 |
}
|
|
@@ -574,7 +538,7 @@ def create_demo():
|
|
| 574 |
)
|
| 575 |
|
| 576 |
# -----------------------------------------------------------------
|
| 577 |
-
# UI layout –
|
| 578 |
# -----------------------------------------------------------------
|
| 579 |
with gr.Row(elem_id="general_items"):
|
| 580 |
gr.Markdown("# ")
|
|
@@ -614,7 +578,7 @@ def create_demo():
|
|
| 614 |
)
|
| 615 |
|
| 616 |
# -----------------------------------------------------------------
|
| 617 |
-
# Wiring –
|
| 618 |
# -----------------------------------------------------------------
|
| 619 |
generate_button.click(
|
| 620 |
fn=generate_video,
|
|
@@ -628,6 +592,7 @@ def create_demo():
|
|
| 628 |
gr.State(value=1.5), # guidance_scale_2
|
| 629 |
gr.State(value=42), # seed
|
| 630 |
gr.State(value=True), # randomize_seed
|
|
|
|
| 631 |
],
|
| 632 |
outputs=[output_video, gr.State(value=42)],
|
| 633 |
)
|
|
@@ -635,6 +600,9 @@ def create_demo():
|
|
| 635 |
return demo
|
| 636 |
|
| 637 |
|
|
|
|
|
|
|
|
|
|
| 638 |
if __name__ == "__main__":
|
| 639 |
demo = create_demo()
|
| 640 |
# keep the launch flags you originally used
|
|
|
|
| 1 |
+
# ------------------------------------------------------------
|
| 2 |
+
# IMPORTS
|
| 3 |
+
# ------------------------------------------------------------
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
import requests
|
|
|
|
| 22 |
import aoti
|
| 23 |
|
| 24 |
# ------------------------------------------------------------
|
| 25 |
+
# CONFIG
|
| 26 |
# ------------------------------------------------------------
|
| 27 |
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
| 28 |
|
|
|
|
| 48 |
)
|
| 49 |
|
| 50 |
# ------------------------------------------------------------
|
| 51 |
+
# MODEL LOADING
|
| 52 |
# ------------------------------------------------------------
|
| 53 |
pipe = WanImageToVideoPipeline.from_pretrained(
|
| 54 |
MODEL_ID,
|
|
|
|
| 73 |
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
| 74 |
adapter_name="lightx2v",
|
| 75 |
)
|
| 76 |
+
|
| 77 |
kwargs_lora = {"load_into_transformer_2": True}
|
| 78 |
pipe.load_lora_weights(
|
| 79 |
"Kijai/WanVideo_comfy",
|
|
|
|
| 81 |
adapter_name="lightx2v_2",
|
| 82 |
**kwargs_lora,
|
| 83 |
)
|
| 84 |
+
|
| 85 |
pipe.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1.0, 1.0])
|
| 86 |
pipe.fuse_lora(adapter_names=["lightx2v"], lora_scale=3.0, components=["transformer"])
|
| 87 |
pipe.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1.0, components=["transformer_2"])
|
|
|
|
| 96 |
aoti.aoti_blocks_load(pipe.transformer_2, "zerogpu-aoti/Wan2", variant="fp8da")
|
| 97 |
|
| 98 |
# ------------------------------------------------------------
|
| 99 |
+
# HELPERS
|
| 100 |
# ------------------------------------------------------------
|
| 101 |
def resize_image(image: Image.Image) -> Image.Image:
|
| 102 |
"""Resize / crop the input image so the model receives a valid size."""
|
|
|
|
| 122 |
top = (height - crop_h) // 2
|
| 123 |
img = image.crop((0, top, width, top + crop_h))
|
| 124 |
else:
|
| 125 |
+
# No cropping needed – just compute target size
|
| 126 |
if width > height: # landscape
|
| 127 |
target_w = MAX_DIM
|
| 128 |
target_h = int(round(target_w / aspect_ratio))
|
|
|
|
| 131 |
target_w = int(round(target_h * aspect_ratio))
|
| 132 |
img = image
|
| 133 |
|
| 134 |
+
# Round to the nearest multiple of MULTIPLE_OF and clamp
|
| 135 |
final_w = round(target_w / MULTIPLE_OF) * MULTIPLE_OF
|
| 136 |
final_h = round(target_h / MULTIPLE_OF) * MULTIPLE_OF
|
| 137 |
final_w = max(MIN_DIM, min(MAX_DIM, final_w))
|
|
|
|
| 141 |
|
| 142 |
|
| 143 |
def get_num_frames(duration_seconds: float) -> int:
|
| 144 |
+
"""Number of frames the model will generate for the requested duration."""
|
| 145 |
return 1 + int(
|
| 146 |
np.clip(
|
| 147 |
int(round(duration_seconds * FIXED_FPS)),
|
|
|
|
| 161 |
guidance_scale_2,
|
| 162 |
seed,
|
| 163 |
randomize_seed,
|
| 164 |
+
progress, # <-- required by @spaces.GPU
|
| 165 |
):
|
| 166 |
+
"""
|
| 167 |
+
Rough estimate of how long the GPU will be occupied.
|
| 168 |
+
Used by the @spaces.GPU decorator to enforce the 30‑second safety cap.
|
| 169 |
+
"""
|
| 170 |
BASE_FRAMES_HEIGHT_WIDTH = 81 * 832 * 624
|
| 171 |
BASE_STEP_DURATION = 15
|
| 172 |
|
|
|
|
| 176 |
step_duration = BASE_STEP_DURATION * factor ** 1.5
|
| 177 |
est = 10 + int(steps) * step_duration
|
| 178 |
|
| 179 |
+
# Never block the GPU > 30 s
|
| 180 |
return min(est, 30)
|
| 181 |
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
@spaces.GPU(duration=get_duration)
|
| 184 |
def generate_video(
|
| 185 |
input_image,
|
|
|
|
| 191 |
guidance_scale_2=1.5,
|
| 192 |
seed=42,
|
| 193 |
randomize_seed=False,
|
| 194 |
+
progress=gr.Progress(track_tqdm=True), # <-- now mandatory
|
| 195 |
):
|
| 196 |
+
"""
|
| 197 |
+
Generate a video from an image + prompt.
|
| 198 |
+
Returns (video_path, seed_used).
|
| 199 |
+
"""
|
| 200 |
if input_image is None:
|
| 201 |
raise gr.Error("Please upload an input image.")
|
| 202 |
|
|
|
|
| 237 |
|
| 238 |
|
| 239 |
# ------------------------------------------------------------
|
| 240 |
+
# UI – unchanged visual / CSS / 500‑guard / unique‑link
|
| 241 |
# ------------------------------------------------------------
|
| 242 |
def create_demo():
|
| 243 |
with gr.Blocks(css="", title="Fast Image to Video") as demo:
|
| 244 |
# -----------------------------------------------------------------
|
| 245 |
+
# 500‑error guard – exactly the same as in your fork
|
| 246 |
# -----------------------------------------------------------------
|
| 247 |
gr.HTML(
|
| 248 |
"""
|
|
|
|
| 256 |
)
|
| 257 |
|
| 258 |
# -----------------------------------------------------------------
|
| 259 |
+
# Custom CSS – kept verbatim
|
| 260 |
# -----------------------------------------------------------------
|
| 261 |
gr.HTML(
|
| 262 |
"""
|
|
|
|
| 266 |
@keyframes glow-hover {0%{box-shadow:0 0 20px rgba(0,255,128,0.7);}50%{box-shadow:0 0 20px rgba(0,255,128,0.9);}100%{box-shadow:0 0 20px rgba(0,255,128,0.7);}}
|
| 267 |
@keyframes slide {0%{background-position:0% 50%;}50%{background-position:100% 50%;}100%{background-position:0% 50%;}}
|
| 268 |
@keyframes pulse {0%,100%{opacity:0.7;}50%{opacity:1;}}
|
|
|
|
| 269 |
body{
|
| 270 |
background:#000 !important;
|
| 271 |
color:#FFF !important;
|
|
|
|
| 284 |
body::before{
|
| 285 |
content:"";
|
| 286 |
display:block;
|
| 287 |
+
height:600px; /* <-- top gap you asked for */
|
| 288 |
background:#000 !important;
|
| 289 |
}
|
| 290 |
.gr-blocks,.container{
|
|
|
|
| 367 |
box-sizing:border-box !important;
|
| 368 |
display:block !important;
|
| 369 |
}
|
| 370 |
+
/* HIDE ALL GRADIO PROCESSING UI – 100+ SELECTORS */
|
| 371 |
.image-container[aria-label="Generated Video"] .progress-text,
|
| 372 |
.image-container[aria-label="Generated Video"] .gr-progress,
|
| 373 |
.image-container[aria-label="Generated Video"] .gr-progress-bar,
|
|
|
|
| 422 |
.image-container[aria-label="Input Image"] .file-upload,
|
| 423 |
.image-container[aria-label="Input Image"] .file-preview,
|
| 424 |
.image-container[aria-label="Input Image"] .image-actions,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 425 |
.image-container[aria-label="Generated Video"] .file-upload,
|
| 426 |
.image-container[aria-label="Generated Video"] .file-preview,
|
| 427 |
+
.image-container[aria-label="Generated Video"] .image-actions{
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
display:none!important;
|
| 429 |
}
|
| 430 |
.image-container[aria-label="Generated Video"].processing{
|
|
|
|
| 458 |
.image-container[aria-label="Generated Video"].processing *{
|
| 459 |
display:none!important;
|
| 460 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
input,textarea,.gr-dropdown,.gr-dropdown select{
|
| 462 |
background:#000!important;
|
| 463 |
color:#FFF!important;
|
|
|
|
| 468 |
max-width:100vw!important;
|
| 469 |
box-sizing:border-box!important;
|
| 470 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
.gr-button-primary{
|
| 472 |
background:linear-gradient(90deg,rgba(0,255,128,0.3),rgba(0,200,100,0.3),rgba(0,255,128,0.3))!important;
|
| 473 |
background-size:200% 100%;
|
|
|
|
| 528 |
.gr-button-primary:hover{
|
| 529 |
box-shadow:0 0 12px rgba(0,255,128,0.9)!important;
|
| 530 |
}
|
| 531 |
+
.image-container{min-height:300px;}
|
|
|
|
|
|
|
|
|
|
| 532 |
.image-container[aria-label="Generated Video"].processing::before{
|
| 533 |
font-size:1.2rem!important;
|
| 534 |
}
|
|
|
|
| 538 |
)
|
| 539 |
|
| 540 |
# -----------------------------------------------------------------
|
| 541 |
+
# UI layout – unchanged component order (matches generate_video signature)
|
| 542 |
# -----------------------------------------------------------------
|
| 543 |
with gr.Row(elem_id="general_items"):
|
| 544 |
gr.Markdown("# ")
|
|
|
|
| 578 |
)
|
| 579 |
|
| 580 |
# -----------------------------------------------------------------
|
| 581 |
+
# Wiring – keep the same order as the function signature
|
| 582 |
# -----------------------------------------------------------------
|
| 583 |
generate_button.click(
|
| 584 |
fn=generate_video,
|
|
|
|
| 592 |
gr.State(value=1.5), # guidance_scale_2
|
| 593 |
gr.State(value=42), # seed
|
| 594 |
gr.State(value=True), # randomize_seed
|
| 595 |
+
# progress is *not* passed – the @spaces.GPU decorator injects it
|
| 596 |
],
|
| 597 |
outputs=[output_video, gr.State(value=42)],
|
| 598 |
)
|
|
|
|
| 600 |
return demo
|
| 601 |
|
| 602 |
|
| 603 |
+
# ------------------------------------------------------------
|
| 604 |
+
# MAIN
|
| 605 |
+
# ------------------------------------------------------------
|
| 606 |
if __name__ == "__main__":
|
| 607 |
demo = create_demo()
|
| 608 |
# keep the launch flags you originally used
|