Spaces:
Runtime error
Runtime error
File size: 8,263 Bytes
dc42c56 adc1f6f dc42c56 4288c52 adc1f6f dc42c56 6f6de6b 4288c52 dc42c56 08e64b3 d236b81 0b430df dc42c56 4288c52 dc42c56 5ef30f3 4288c52 dc42c56 4288c52 f8e02fa dc42c56 f8e02fa dc42c56 f8e02fa 4288c52 f8e02fa dc42c56 4288c52 f8e02fa 2a57e3c dc42c56 4288c52 dc42c56 4288c52 dc42c56 4288c52 dc42c56 271841b 2a57e3c 271841b dc42c56 4288c52 271841b adc1f6f 4288c52 adc1f6f dc42c56 15c5397 271841b adc1f6f dc42c56 15c5397 adc1f6f 15c5397 adc1f6f 15c5397 e66a23b ac86abb dc42c56 4288c52 adc1f6f dc42c56 75ed7e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
import time
from datetime import datetime
from optimum.intel import OVStableDiffusionPipeline
import re
from functools import lru_cache
# Đảm bảo tính tái tạo
torch.manual_seed(0)
np.random.seed(0)
random.seed(0)
# Tối ưu hóa bộ nhớ và tốc độ
torch.set_num_threads(1) # Giảm xung đột thread
torch.backends.mkldnn.enabled = True # Kích hoạt MKL-DNN
torch.backends.openmp.enabled = True
print("🔧 Loading OpenVINO pipeline: HARRY07979/sd-v1-5-openvino")
try:
pipeline = OVStableDiffusionPipeline.from_pretrained(
"HARRY07979/stable-diffusion-v1-5-openvino",
safety_checker=None,
feature_extractor=None,
torch_dtype=torch.float32
)
except Exception as e:
print(f"Error loading pipeline from remote repository: {e}")
try:
pipeline = OVStableDiffusionPipeline.from_pretrained(
"/path/to/local/model",
safety_checker=None,
feature_extractor=True,
torch_dtype=torch.float32,
local_files_only=True,
)
except Exception as e:
print(f"Error loading local model: {e}")
raise RuntimeError("Failed to load the pipeline.")
# Tối ưu hóa pipeline
pipeline.to("cpu")
# Loại bỏ dòng pipeline.model.half() vì không hỗ trợ với OVStableDiffusionPipeline
pipeline.compile() # Biên dịch mô hình nếu hỗ trợ
# Tối ưu hóa từ điển NSFW - sử dụng set để tìm kiếm nhanh hơn
NSFW_HIGH = {
"nude", "naked", "sex", "porn", "xxx", "fuck", "dick", "cock", "pussy", "vagina", "penis",
"boobs", "tits", "breasts", "bra", "panties", "underwear", "lingerie", "orgasm", "cum",
"blowjob", "handjob", "masturbate", "rape", "gangbang", "incest", "hentai", "lewd",
"erotic", "kinky", "bondage", "bdsm", "squirt", "creampie", "threesome", "orgy", "yaoi",
"yuri", "futanari", "cunnilingus", "fellatio", "anal", "paizuri", "bukkake", "guro",
"vore", "tentacle", "netorare", "cuckold", "exhibitionism", "voyeurism", "poop", "pee",
"poo", "shit", "piss", "scat", "diarrhea", "vomit", "gore", "blood", "murder",
"torture", "suicide", "decapitation", "mutilation", "drugs", "cocaine", "heroin",
"lsd", "ecstasy", "vlxx"
}
NSFW_MEDIUM = {
"bikini", "swimwear", "sexy", "succubus", "leather", "latex", "stockings", "miniskirt",
"cleavage", "thighs", "ass", "butt", "skirt", "dress", "topless", "wet", "moaning",
"spread", "legs apart", "tight", "revealing", "provocative", "suggestive", "flirty"
}
NSFW_PHRASES = {
"spreading legs", "removing bra", "pulling panties", "sucking dick", "licking pussy",
"penetrating", "fucking scene", "hard cock", "wet pussy", "big tits", "exposed breasts",
"nipples visible", "ass spread", "thigh gap", "camel toe", "pussy lips", "cum on face",
"blowjob scene", "anal sex", "titty fuck", "gang rape", "group sex", "public sex",
"hidden camera", "peeing girl", "pooping girl", "covered in blood", "cutting flesh",
"snorting cocaine", "injecting heroin", "hallucinating", "smoking weed"
}
SENSITIVE_CONTEXT = {
"spread", "removing", "pulling", "sucking", "licking", "penetrating",
"fucking", "hard", "wet", "exposed", "visible", "ass", "tight", "revealing"
}
# Tối ưu hóa hàm NSFW detection
@lru_cache(maxsize=1024)
def detect_nsfw(prompt: str):
prompt_lower = prompt.lower()
# Kiểm tra từ khóa cao
words = set(re.findall(r'\b\w+\b', prompt_lower))
if words & NSFW_HIGH:
return True
# Kiểm tra cụm từ NSFW
for phrase in NSFW_PHRASES:
if phrase in prompt_lower:
return True
# Kiểm tra từ khóa trung bình + ngữ cảnh nhạy cảm
medium_matches = words & NSFW_MEDIUM
if medium_matches and (words & SENSITIVE_CONTEXT):
return True
return False
def infer(
prompt: str,
negative_prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
progress=gr.Progress(track_tqdm=True),
):
print("=" * 60)
now = datetime.now()
current_time = now.strftime("%H:%M:%S %d/%m/%Y")
print(f"⏰ Run at: {current_time}")
print(f"📝 Prompt: {prompt}")
print(f"🚫 Negative Prompt: {negative_prompt or '[None]'}")
# Tối ưu hóa kiểm tra NSFW
if detect_nsfw(prompt):
raise gr.Error("⚠️ Prompt contains NSFW content. Please use a safe prompt.")
if randomize_seed:
seed = random.randint(0, np.iinfo(np.int32).max)
print(f"🎲 Random Seed generated: {seed}")
else:
print(f"🔢 Using fixed Seed: {seed}")
# Tối ưu hóa kích thước ảnh
width = (width // 8) * 8
height = (height // 8) * 8
print(f"🖼️ Image Size: {width}x{height}")
print(f"🎯 Guidance Scale: {guidance_scale}")
print(f"📈 Inference Steps: {num_inference_steps}")
# Tối ưu hóa generator
generator = torch.Generator("cpu").manual_seed(seed)
# Sử dụng inference_mode để tăng tốc
with torch.inference_mode():
result = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
# Tối ưu hóa batch
batch_size=1,
# Tăng chất lượng
eta=0.0, # Giảm nhiễu
use_karras_sigmas=True, # Cải thiện chất lượng
)
image = result.images[0]
return image, seed
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
.donate-button {
background-color: #FFDD00 !important;
color: #000000 !important;
}
"""
# Hàm JavaScript để mở trang donate khi nhấn nút
donate_js = """
function() {
window.open('https://buymeacoffee.com/harry07?status=1', '_blank');
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
gr.Markdown("## Stable Diffusion v1.5 DEMO")
# Thêm nút Donate với biểu tượng ☕
donate_btn = gr.Button("☕ Donate", elem_classes="donate-button")
with gr.Row():
prompt = gr.Text(label="Prompt", placeholder="Enter your prompt", show_label=False)
run_button = gr.Button("Generate", variant="primary")
result = gr.Image(label="Generated Image", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(label="Negative prompt", placeholder="Enter negative prompt")
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1024, step=8, value=512)
height = gr.Slider(label="Height", minimum=256, maximum=1024, step=8, value=512)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=15.0, step=0.1, value=7.5)
num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=35)
gr.Examples(
examples=[
"A fantasy landscape, vivid colors, sunset light",
"Portrait of a cyberpunk robot girl, neon lighting",
"An epic sci-fi scene: spaceship battle in space",
],
inputs=[prompt]
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
# Gán sự kiện click cho nút Donate
donate_btn.click(None, js=donate_js)
if __name__ == "__main__":
demo.launch(share=True) |