Muhammad Haris
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,82 @@
|
|
| 1 |
-
import
|
| 2 |
import pandas as pd
|
|
|
|
| 3 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 4 |
-
import
|
| 5 |
-
import
|
| 6 |
-
import
|
| 7 |
import gdown
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
-
# Download the file
|
| 11 |
file_id = '1P3Nz6f3KG0m0kO_2pEfnVIhgP8Bvkl4v'
|
| 12 |
url = f'https://drive.google.com/uc?id={file_id}'
|
| 13 |
excel_file_path = os.path.join(os.path.expanduser("~"), 'medical_data.csv')
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# Read the CSV file into a DataFrame using 'latin1' encoding
|
| 18 |
try:
|
| 19 |
medical_df = pd.read_csv(excel_file_path, encoding='utf-8')
|
| 20 |
except UnicodeDecodeError:
|
| 21 |
medical_df = pd.read_csv(excel_file_path, encoding='latin1')
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
model
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
#
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 4 |
from sklearn.metrics.pairwise import cosine_similarity
|
| 5 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
| 6 |
+
from sentence_transformers import SentenceTransformer, util
|
| 7 |
+
import torch
|
| 8 |
import gdown
|
| 9 |
+
import os
|
| 10 |
+
|
| 11 |
|
|
|
|
| 12 |
file_id = '1P3Nz6f3KG0m0kO_2pEfnVIhgP8Bvkl4v'
|
| 13 |
url = f'https://drive.google.com/uc?id={file_id}'
|
| 14 |
excel_file_path = os.path.join(os.path.expanduser("~"), 'medical_data.csv')
|
| 15 |
|
| 16 |
+
# Read the CSV file
|
|
|
|
|
|
|
| 17 |
try:
|
| 18 |
medical_df = pd.read_csv(excel_file_path, encoding='utf-8')
|
| 19 |
except UnicodeDecodeError:
|
| 20 |
medical_df = pd.read_csv(excel_file_path, encoding='latin1')
|
| 21 |
|
| 22 |
+
# TF-IDF Vectorization
|
| 23 |
+
vectorizer = TfidfVectorizer(stop_words='english')
|
| 24 |
+
X_tfidf = vectorizer.fit_transform(medical_df['Questions'])
|
| 25 |
+
|
| 26 |
+
# Load pre-trained GPT-2 model and tokenizer
|
| 27 |
+
model_name = "sshleifer/tiny-gpt2"
|
| 28 |
+
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
| 29 |
+
model = GPT2LMHeadModel.from_pretrained(model_name)
|
| 30 |
+
|
| 31 |
+
# Load pre-trained Sentence Transformer model
|
| 32 |
+
sbert_model_name = "paraphrase-MiniLM-L6-v2"
|
| 33 |
+
sbert_model = SentenceTransformer(sbert_model_name)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# Function to answer medical questions using a combination of TF-IDF, LLM, and semantic similarity
|
| 37 |
+
def get_medical_response(question, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df):
|
| 38 |
+
# TF-IDF Cosine Similarity
|
| 39 |
+
question_vector = vectorizer.transform([question])
|
| 40 |
+
tfidf_similarities = cosine_similarity(question_vector, X_tfidf).flatten()
|
| 41 |
+
|
| 42 |
+
# Find the most similar question using semantic similarity
|
| 43 |
+
question_embedding = sbert_model.encode(question, convert_to_tensor=True)
|
| 44 |
+
similarities = util.pytorch_cos_sim(question_embedding, sbert_model.encode(medical_df['Questions'].tolist(), convert_to_tensor=True)).flatten()
|
| 45 |
+
max_sim_index = similarities.argmax().item()
|
| 46 |
+
|
| 47 |
+
# LLM response generation
|
| 48 |
+
input_text = "DiBot: " + medical_df.iloc[max_sim_index]['Questions']
|
| 49 |
+
input_ids = tokenizer.encode(input_text, return_tensors="pt")
|
| 50 |
+
attention_mask = torch.ones(input_ids.shape, dtype=torch.long)
|
| 51 |
+
pad_token_id = tokenizer.eos_token_id
|
| 52 |
+
lm_output = model.generate(input_ids, max_length=150, num_return_sequences=1, no_repeat_ngram_size=2, attention_mask=attention_mask, pad_token_id=pad_token_id)
|
| 53 |
+
lm_generated_response = tokenizer.decode(lm_output[0], skip_special_tokens=True)
|
| 54 |
+
|
| 55 |
+
# Compare similarities and choose the best response
|
| 56 |
+
if tfidf_similarities.max() > 0.5:
|
| 57 |
+
tfidf_index = tfidf_similarities.argmax()
|
| 58 |
+
return medical_df.iloc[tfidf_index]['Answers']
|
| 59 |
+
else:
|
| 60 |
+
return lm_generated_response
|
| 61 |
+
|
| 62 |
+
# Streamlit UI
|
| 63 |
+
st.title("DiBot")
|
| 64 |
+
|
| 65 |
+
if "messages" not in st.session_state:
|
| 66 |
+
st.session_state.messages = []
|
| 67 |
+
|
| 68 |
+
for message in st.session_state.messages:
|
| 69 |
+
with st.chat_message(message["role"]):
|
| 70 |
+
st.markdown(message["content"])
|
| 71 |
+
|
| 72 |
+
user_input = st.chat_input("You:")
|
| 73 |
+
|
| 74 |
+
if user_input:
|
| 75 |
+
response = get_medical_response(user_input, vectorizer, X_tfidf, model, tokenizer, sbert_model, medical_df)
|
| 76 |
+
st.session_state.messages.append({"role": "user", "content": user_input})
|
| 77 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 78 |
+
|
| 79 |
+
# Display the chat messages
|
| 80 |
+
for message in st.session_state.messages:
|
| 81 |
+
with st.chat_message(message["role"]):
|
| 82 |
+
st.markdown(message["content"])
|