Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
-
from
|
| 4 |
-
|
| 5 |
|
| 6 |
# TODO: add instructor models
|
| 7 |
# "hkunlp/instructor-xl",
|
|
@@ -40,23 +40,35 @@ optimization_options = list(opt2desc.values())
|
|
| 40 |
|
| 41 |
|
| 42 |
|
| 43 |
-
def
|
| 44 |
ds_name,
|
| 45 |
ds_config,
|
|
|
|
| 46 |
ds_split,
|
|
|
|
|
|
|
| 47 |
num2skip,
|
| 48 |
num2embed,
|
| 49 |
-
progress=gr.Progress(),
|
| 50 |
):
|
| 51 |
-
if progress is not None:
|
| 52 |
-
progress(0.5, "Loading dataset...")
|
| 53 |
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
| 58 |
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
|
| 62 |
|
|
@@ -71,11 +83,10 @@ def embed(
|
|
| 71 |
new_dataset_id,
|
| 72 |
num2skip,
|
| 73 |
num2embed,
|
| 74 |
-
progress=gr.Progress(),
|
| 75 |
):
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
ds = load_hf_dataset(ds_name, ds_config, ds_split)
|
| 79 |
|
| 80 |
opt_level = desc2opt[opt_desc]
|
| 81 |
|
|
@@ -104,6 +115,9 @@ def embed(
|
|
| 104 |
with gr.Blocks(title="Bulk embeddings") as demo:
|
| 105 |
gr.Markdown(
|
| 106 |
"""
|
|
|
|
|
|
|
|
|
|
| 107 |
This Space allows you to embed a large dataset easily. For instance, this can easily create vectors for Wikipedia \
|
| 108 |
articles -- taking about __ hours and costing approximately $__.
|
| 109 |
This utilizes state-of-the-art open-source embedding models, \
|
|
@@ -118,6 +132,7 @@ with gr.Blocks(title="Bulk embeddings") as demo:
|
|
| 118 |
- Text splitting options
|
| 119 |
- More control about which rows to embed (skip some, stop early)
|
| 120 |
- Dynamic padding
|
|
|
|
| 121 |
## Steps
|
| 122 |
1. Upload the dataset to the Hugging Face Hub.
|
| 123 |
2. Enter dataset details into the form below.
|
|
@@ -125,6 +140,7 @@ with gr.Blocks(title="Bulk embeddings") as demo:
|
|
| 125 |
4. Enter optimization level. See [here](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization#optimization-configuration) for details.
|
| 126 |
5. Choose a name for the new dataset.
|
| 127 |
6. Hit run!
|
|
|
|
| 128 |
### Note:
|
| 129 |
If you have short documents, O3 will be faster than O4. If you have long documents, O4 will be faster than O3. \
|
| 130 |
O4 requires the tokenized documents to be padded to max length.
|
|
@@ -170,7 +186,7 @@ with gr.Blocks(title="Bulk embeddings") as demo:
|
|
| 170 |
num2skip = gr.Slider(
|
| 171 |
value=0,
|
| 172 |
minimum=0,
|
| 173 |
-
maximum=
|
| 174 |
step=1,
|
| 175 |
label="Number of rows to skip",
|
| 176 |
)
|
|
@@ -178,14 +194,22 @@ with gr.Blocks(title="Bulk embeddings") as demo:
|
|
| 178 |
num2embed = gr.Slider(
|
| 179 |
value=30000,
|
| 180 |
minimum=-1,
|
| 181 |
-
maximum=
|
| 182 |
step=1,
|
| 183 |
label="Number of rows to embed (-1 = all)",
|
| 184 |
)
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
with gr.Row():
|
| 187 |
|
| 188 |
-
download_btn = gr.Button(value="Download dataset!")
|
| 189 |
embed_btn = gr.Button(value="Embed texts!")
|
| 190 |
|
| 191 |
last = gr.Textbox(value="")
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
+
from data import download_dataset, tokenize_dataset, load_tokenized_dataset
|
| 4 |
+
from infer import get_model_and_tokenizer, batch_embed
|
| 5 |
|
| 6 |
# TODO: add instructor models
|
| 7 |
# "hkunlp/instructor-xl",
|
|
|
|
| 40 |
|
| 41 |
|
| 42 |
|
| 43 |
+
def download_and_tokenize(
|
| 44 |
ds_name,
|
| 45 |
ds_config,
|
| 46 |
+
column_name,
|
| 47 |
ds_split,
|
| 48 |
+
model_choice,
|
| 49 |
+
opt_desc,
|
| 50 |
num2skip,
|
| 51 |
num2embed,
|
| 52 |
+
progress=gr.Progress(track_tqdm=True),
|
| 53 |
):
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
num_samples = download_dataset(ds_name, ds_config, ds_split, num2skip, num2embed)
|
| 56 |
+
|
| 57 |
+
opt_level = desc2opt[opt_desc]
|
| 58 |
+
|
| 59 |
+
model_name = model_choice.split()[0]
|
| 60 |
|
| 61 |
+
tokenize_dataset(
|
| 62 |
+
ds_name=ds_name,
|
| 63 |
+
ds_config=ds_config,
|
| 64 |
+
model_name=model_name,
|
| 65 |
+
opt_level=opt_level,
|
| 66 |
+
column_name=column_name,
|
| 67 |
+
num2skip=num2skip,
|
| 68 |
+
num2embed=num2embed,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
return f"Downloaded! It has {len(num_samples)} docs."
|
| 72 |
|
| 73 |
|
| 74 |
|
|
|
|
| 83 |
new_dataset_id,
|
| 84 |
num2skip,
|
| 85 |
num2embed,
|
| 86 |
+
progress=gr.Progress(track_tqdm=True),
|
| 87 |
):
|
| 88 |
+
|
| 89 |
+
ds = load_tokenized_dataset(ds_name, ds_config, ds_split)
|
|
|
|
| 90 |
|
| 91 |
opt_level = desc2opt[opt_desc]
|
| 92 |
|
|
|
|
| 115 |
with gr.Blocks(title="Bulk embeddings") as demo:
|
| 116 |
gr.Markdown(
|
| 117 |
"""
|
| 118 |
+
# Bulk Embeddings
|
| 119 |
+
|
| 120 |
+
|
| 121 |
This Space allows you to embed a large dataset easily. For instance, this can easily create vectors for Wikipedia \
|
| 122 |
articles -- taking about __ hours and costing approximately $__.
|
| 123 |
This utilizes state-of-the-art open-source embedding models, \
|
|
|
|
| 132 |
- Text splitting options
|
| 133 |
- More control about which rows to embed (skip some, stop early)
|
| 134 |
- Dynamic padding
|
| 135 |
+
|
| 136 |
## Steps
|
| 137 |
1. Upload the dataset to the Hugging Face Hub.
|
| 138 |
2. Enter dataset details into the form below.
|
|
|
|
| 140 |
4. Enter optimization level. See [here](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization#optimization-configuration) for details.
|
| 141 |
5. Choose a name for the new dataset.
|
| 142 |
6. Hit run!
|
| 143 |
+
|
| 144 |
### Note:
|
| 145 |
If you have short documents, O3 will be faster than O4. If you have long documents, O4 will be faster than O3. \
|
| 146 |
O4 requires the tokenized documents to be padded to max length.
|
|
|
|
| 186 |
num2skip = gr.Slider(
|
| 187 |
value=0,
|
| 188 |
minimum=0,
|
| 189 |
+
maximum=100_000_000,
|
| 190 |
step=1,
|
| 191 |
label="Number of rows to skip",
|
| 192 |
)
|
|
|
|
| 194 |
num2embed = gr.Slider(
|
| 195 |
value=30000,
|
| 196 |
minimum=-1,
|
| 197 |
+
maximum=100_000_000,
|
| 198 |
step=1,
|
| 199 |
label="Number of rows to embed (-1 = all)",
|
| 200 |
)
|
| 201 |
|
| 202 |
+
num2upload = gr.Slider(
|
| 203 |
+
value=10000,
|
| 204 |
+
minimum=1000,
|
| 205 |
+
maximum=100000,
|
| 206 |
+
step=1000,
|
| 207 |
+
label="Chunk size for uploading",
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
with gr.Row():
|
| 211 |
|
| 212 |
+
download_btn = gr.Button(value="Download and tokenize dataset!")
|
| 213 |
embed_btn = gr.Button(value="Embed texts!")
|
| 214 |
|
| 215 |
last = gr.Textbox(value="")
|