Spaces:
Runtime error
Runtime error
use upload file/folder and dataloader
Browse files
utils.py
CHANGED
|
@@ -5,6 +5,7 @@ from pathlib import Path
|
|
| 5 |
from typing import Union, Dict, List
|
| 6 |
|
| 7 |
import torch
|
|
|
|
| 8 |
import datasets
|
| 9 |
from datasets import load_dataset, Dataset
|
| 10 |
from transformers import AutoTokenizer, PreTrainedTokenizer
|
|
@@ -274,17 +275,15 @@ def batch_embed(
|
|
| 274 |
|
| 275 |
repo = init_git_repo(new_dataset_id)
|
| 276 |
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
},
|
| 287 |
-
)
|
| 288 |
)
|
| 289 |
|
| 290 |
embeds = []
|
|
@@ -299,23 +298,20 @@ def batch_embed(
|
|
| 299 |
|
| 300 |
inference_bs = get_batch_size(torch.cuda.get_device_name(0), model_name, opt_level)
|
| 301 |
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
# skip through some examples
|
| 305 |
if num2skip > 0:
|
| 306 |
-
|
| 307 |
|
| 308 |
start_time = time.time()
|
| 309 |
-
while loop:
|
| 310 |
-
batch = [next(iterator, None) for _ in range(inference_bs)]
|
| 311 |
-
|
| 312 |
-
# batch will have None values when iterator runs out
|
| 313 |
-
if batch[-1] is None:
|
| 314 |
-
batch = [x for x in batch if x is not None]
|
| 315 |
-
loop = False
|
| 316 |
-
if len(batch) == 0:
|
| 317 |
-
break
|
| 318 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
ids = torch.tensor([b["input_ids"] for b in batch], device=device)
|
| 320 |
mask = torch.tensor([b["attention_mask"] for b in batch], device=device)
|
| 321 |
t_ids = torch.zeros_like(ids)
|
|
@@ -325,7 +321,7 @@ def batch_embed(
|
|
| 325 |
embeds.extend(mean_pooling(outputs[0], mask).cpu().tolist())
|
| 326 |
texts.extend([b[column_name] for b in batch])
|
| 327 |
|
| 328 |
-
current_count +=
|
| 329 |
|
| 330 |
# Check if we have embedded enough examples
|
| 331 |
if current_count >= num2embed:
|
|
@@ -405,18 +401,19 @@ def init_git_repo(repo_id: str):
|
|
| 405 |
|
| 406 |
|
| 407 |
def push_to_repo(
|
| 408 |
-
|
| 409 |
last_count: int,
|
| 410 |
current_count: int,
|
| 411 |
embeds: List[List[float]],
|
| 412 |
texts: List[str],
|
|
|
|
| 413 |
):
|
| 414 |
"""
|
| 415 |
Push embeddings to the repo.
|
| 416 |
|
| 417 |
Args:
|
| 418 |
-
|
| 419 |
-
|
| 420 |
last_count (`int`):
|
| 421 |
last count of embeddings.
|
| 422 |
This is the number of embeddings that have already been pushed.
|
|
@@ -427,9 +424,10 @@ def push_to_repo(
|
|
| 427 |
list of embeddings to push to the repo
|
| 428 |
texts (`List[str]`):
|
| 429 |
list of texts to push to the repo
|
|
|
|
|
|
|
| 430 |
"""
|
| 431 |
|
| 432 |
-
# TODO: write dataset loading script as well
|
| 433 |
|
| 434 |
temp_ds = Dataset.from_dict(
|
| 435 |
{
|
|
@@ -438,24 +436,46 @@ def push_to_repo(
|
|
| 438 |
}
|
| 439 |
)
|
| 440 |
|
| 441 |
-
|
|
|
|
|
|
|
| 442 |
data_dir.mkdir(exist_ok=True, parents=True)
|
| 443 |
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
)
|
| 447 |
|
| 448 |
-
|
| 449 |
-
commit_message=f"Embedded examples {last_count} thru {current_count}",
|
| 450 |
-
blocking=False,
|
| 451 |
-
auto_lfs_prune=True,
|
| 452 |
-
)
|
| 453 |
|
| 454 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 455 |
|
| 456 |
-
# most_recent_file = f"embeddings_{last_count}_{current_count}.parquet"
|
| 457 |
|
| 458 |
# Delete old files
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
|
|
|
|
|
| 5 |
from typing import Union, Dict, List
|
| 6 |
|
| 7 |
import torch
|
| 8 |
+
from torch.utils.data import DataLoader
|
| 9 |
import datasets
|
| 10 |
from datasets import load_dataset, Dataset
|
| 11 |
from transformers import AutoTokenizer, PreTrainedTokenizer
|
|
|
|
| 275 |
|
| 276 |
repo = init_git_repo(new_dataset_id)
|
| 277 |
|
| 278 |
+
ds = ds.map(
|
| 279 |
+
tokenize,
|
| 280 |
+
batched=True,
|
| 281 |
+
batch_size=map_batch_size,
|
| 282 |
+
fn_kwargs={
|
| 283 |
+
"tokenizer": tokenizer,
|
| 284 |
+
"column_name": column_name,
|
| 285 |
+
"padding": "max_length" if opt_level == "O4" else True,
|
| 286 |
+
},
|
|
|
|
|
|
|
| 287 |
)
|
| 288 |
|
| 289 |
embeds = []
|
|
|
|
| 298 |
|
| 299 |
inference_bs = get_batch_size(torch.cuda.get_device_name(0), model_name, opt_level)
|
| 300 |
|
| 301 |
+
# skip through some examples if specified
|
|
|
|
|
|
|
| 302 |
if num2skip > 0:
|
| 303 |
+
ds = ds.skip(num2skip)
|
| 304 |
|
| 305 |
start_time = time.time()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
+
for batch in DataLoader(
|
| 308 |
+
ds,
|
| 309 |
+
batch_size=inference_bs,
|
| 310 |
+
shuffle=False,
|
| 311 |
+
num_workers=2,
|
| 312 |
+
pin_memory=True,
|
| 313 |
+
drop_last=False,
|
| 314 |
+
):
|
| 315 |
ids = torch.tensor([b["input_ids"] for b in batch], device=device)
|
| 316 |
mask = torch.tensor([b["attention_mask"] for b in batch], device=device)
|
| 317 |
t_ids = torch.zeros_like(ids)
|
|
|
|
| 321 |
embeds.extend(mean_pooling(outputs[0], mask).cpu().tolist())
|
| 322 |
texts.extend([b[column_name] for b in batch])
|
| 323 |
|
| 324 |
+
current_count += ids.shape[0]
|
| 325 |
|
| 326 |
# Check if we have embedded enough examples
|
| 327 |
if current_count >= num2embed:
|
|
|
|
| 401 |
|
| 402 |
|
| 403 |
def push_to_repo(
|
| 404 |
+
repo_id: str,
|
| 405 |
last_count: int,
|
| 406 |
current_count: int,
|
| 407 |
embeds: List[List[float]],
|
| 408 |
texts: List[str],
|
| 409 |
+
api: HfApi,
|
| 410 |
):
|
| 411 |
"""
|
| 412 |
Push embeddings to the repo.
|
| 413 |
|
| 414 |
Args:
|
| 415 |
+
repo_id (`str`):
|
| 416 |
+
id of the new dataset to create. Should include username or organization.
|
| 417 |
last_count (`int`):
|
| 418 |
last count of embeddings.
|
| 419 |
This is the number of embeddings that have already been pushed.
|
|
|
|
| 424 |
list of embeddings to push to the repo
|
| 425 |
texts (`List[str]`):
|
| 426 |
list of texts to push to the repo
|
| 427 |
+
api (`huggingface_hub.HfApi`):
|
| 428 |
+
api to use to push to the repo
|
| 429 |
"""
|
| 430 |
|
|
|
|
| 431 |
|
| 432 |
temp_ds = Dataset.from_dict(
|
| 433 |
{
|
|
|
|
| 436 |
}
|
| 437 |
)
|
| 438 |
|
| 439 |
+
local_dir = repo_id.replace("/", "_")
|
| 440 |
+
|
| 441 |
+
data_dir = Path(local_dir) / "data"
|
| 442 |
data_dir.mkdir(exist_ok=True, parents=True)
|
| 443 |
|
| 444 |
+
# use zfill so sorting puts the files in order
|
| 445 |
+
filename = f"embeddings_{str(last_count).zfill(8)}_{current_count}.parquet"
|
| 446 |
+
filepath = str(data_dir / filename)
|
| 447 |
|
| 448 |
+
temp_ds.to_parquet(filepath)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
|
| 450 |
+
|
| 451 |
+
files = sorted(list(data_dir.glob("*.parquet")))
|
| 452 |
+
|
| 453 |
+
|
| 454 |
+
if len(files) == 1:
|
| 455 |
+
api.upload_folder(
|
| 456 |
+
folder_path=str(data_dir),
|
| 457 |
+
repo_id=repo_id,
|
| 458 |
+
repo_type="dataset",
|
| 459 |
+
run_as_future=True,
|
| 460 |
+
token=os.environ["HF_TOKEN"],
|
| 461 |
+
commit_message=f"Embedded examples {last_count} thru {current_count} with folder",
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
else:
|
| 465 |
+
|
| 466 |
+
api.upload_file(
|
| 467 |
+
path_or_fileobj=filepath,
|
| 468 |
+
path_in_repo=f"data/{filename}",
|
| 469 |
+
repo_id=repo_id,
|
| 470 |
+
repo_type="dataset",
|
| 471 |
+
run_as_future=True,
|
| 472 |
+
token=os.environ["HF_TOKEN"],
|
| 473 |
+
commit_message=f"Embedded examples {last_count} thru {current_count}",
|
| 474 |
+
)
|
| 475 |
|
|
|
|
| 476 |
|
| 477 |
# Delete old files
|
| 478 |
+
|
| 479 |
+
if len(files) > 4:
|
| 480 |
+
for file in files[:2]:
|
| 481 |
+
file.unlink()
|