File size: 8,906 Bytes
a6526f0
 
 
 
 
 
 
 
 
 
 
 
 
 
dc93409
a6526f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch
import soundfile as sf
import librosa
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import os
from phonemizer import phonemize
import numpy as np
from datetime import datetime, timezone

# --- 1. 全域設定與模型載入函數 (已修改) ---
# 移除了全域的 processor 和 model 變數。
# 刪除了舊的 load_model() 函數。
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"INFO: ASR_de_de.py is configured to use device: {DEVICE}")
MODEL_NAME = "HK0712/Wav2Vec2_German_IPA"

# --- 2. 智能 IPA 切分函數 (保持不變) ---
MULTI_CHAR_PHONEMES = {
    'aɪ', 'aʊ',
    'dʒ', 'pf', 'ts', 'tʃ'
}

def _tokenize_ipa(ipa_string: str) -> list:
    """

    將 IPA 字串智能地切分為音素列表,能正確處理多字元音素。

    """
    phonemes = []
    i = 0
    s = ipa_string.replace(' ', '')
    while i < len(s):
        if i + 1 < len(s) and s[i:i+2] in MULTI_CHAR_PHONEMES:
            phonemes.append(s[i:i+2])
            i += 2
        else:
            phonemes.append(s[i])
            i += 1
    return phonemes

# --- 3. 核心分析函數 (主入口) (已修改) ---
# 將模型載入和快取邏輯合併至此。
def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dict:
    """

    接收音訊檔案路徑和目標句子,回傳詳細的發音分析字典。

    模型會被載入並儲存在此函數獨立的 'cache' 中,實現狀態隔離。

    """
    # 檢查快取中是否已有模型,如果沒有則載入
    if "model" not in cache:
        print(f"快取未命中 (ASR_de_de)。正在載入模型 '{MODEL_NAME}'...")
        try:
            # 載入模型並存入此函數的快取字典
            cache["processor"] = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
            cache["model"] = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
            cache["model"].to(DEVICE)
            print(f"模型 '{MODEL_NAME}' 已載入並快取。")
        except Exception as e:
            print(f"處理或載入模型 '{MODEL_NAME}' 時發生錯誤: {e}")
            raise RuntimeError(f"Failed to load model '{MODEL_NAME}': {e}")

    # 從此函數的獨立快取中獲取模型和處理器
    processor = cache["processor"]
    model = cache["model"]

    # --- 以下為原始分析邏輯,保持不變 ---
    target_ipa_by_word_str = phonemize(target_sentence, language='de', backend='espeak', with_stress=True, strip=True).split()
    
    target_ipa_by_word = [
        _tokenize_ipa(word.replace('ˌ', '').replace('ˈ', '').replace('ː', ''))
        for word in target_ipa_by_word_str
    ]
    target_words_original = target_sentence.split()

    try:
        speech, sample_rate = sf.read(audio_file_path)
        if sample_rate != 16000:
            speech = librosa.resample(y=speech, orig_sr=sample_rate, target_sr=16000)
    except Exception as e:
        raise IOError(f"讀取或處理音訊時發生錯誤: {e}")
    
    input_values = processor(speech, sampling_rate=16000, return_tensors="pt").input_values
    input_values = input_values.to(DEVICE)
    with torch.no_grad():
        logits = model(input_values).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    user_ipa_full = processor.decode(predicted_ids[0])

    word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word)

    return _format_to_json_structure(word_alignments, target_sentence, target_words_original)


# --- 4. 對齊函數 (保持不變) ---
def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized):
    """

    (已修改) 使用新的切分邏輯執行音素對齊。

    """
    user_phonemes = _tokenize_ipa(user_phoneme_str)
    
    target_phonemes_flat = []
    word_boundaries_indices = [] 
    current_idx = 0
    for word_ipa_tokens in target_words_ipa_tokenized:
        target_phonemes_flat.extend(word_ipa_tokens)
        current_idx += len(word_ipa_tokens)
        word_boundaries_indices.append(current_idx - 1)

    dp = np.zeros((len(user_phonemes) + 1, len(target_phonemes_flat) + 1))
    for i in range(1, len(user_phonemes) + 1): dp[i][0] = i
    for j in range(1, len(target_phonemes_flat) + 1): dp[0][j] = j
    for i in range(1, len(user_phonemes) + 1):
        for j in range(1, len(target_phonemes_flat) + 1):
            cost = 0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1
            dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1, dp[i-1][j-1] + cost)

    i, j = len(user_phonemes), len(target_phonemes_flat)
    user_path, target_path = [], []
    while i > 0 or j > 0:
        cost = float('inf') if i == 0 or j == 0 else (0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1)
        if i > 0 and j > 0 and dp[i][j] == dp[i-1][j-1] + cost:
            user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, target_phonemes_flat[j-1]); i -= 1; j -= 1
        elif i > 0 and dp[i][j] == dp[i-1][j] + 1:
            user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, '-'); i -= 1
        else:
            user_path.insert(0, '-'); target_path.insert(0, target_phonemes_flat[j-1]); j -= 1
    
    alignments_by_word = []
    word_start_idx_in_path = 0
    target_phoneme_counter_in_path = 0

    for path_idx, p in enumerate(target_path):
        if p != '-':
            if target_phoneme_counter_in_path in word_boundaries_indices:
                target_alignment = target_path[word_start_idx_in_path : path_idx + 1]
                user_alignment = user_path[word_start_idx_in_path : path_idx + 1]
                
                alignments_by_word.append({
                    "target": target_alignment,
                    "user": user_alignment
                })
                
                word_start_idx_in_path = path_idx + 1
            
            target_phoneme_counter_in_path += 1
            
    return alignments_by_word

# --- 5. 格式化函數 (保持不變) ---
def _format_to_json_structure(alignments, sentence, original_words) -> dict:
    total_phonemes = 0
    total_errors = 0
    correct_words_count = 0
    words_data = []

    num_words_to_process = min(len(alignments), len(original_words))

    for i in range(num_words_to_process):
        alignment = alignments[i]
        word_is_correct = True
        phonemes_data = []
        
        for j in range(len(alignment['target'])):
            target_phoneme = alignment['target'][j]
            user_phoneme = alignment['user'][j]
            is_match = (user_phoneme == target_phoneme)
            
            phonemes_data.append({
                "target": target_phoneme,
                "user": user_phoneme,
                "isMatch": is_match
            })
            
            if not is_match:
                word_is_correct = False
                if not (user_phoneme == '-' and target_phoneme == '-'):
                    total_errors += 1
        
        if word_is_correct:
            correct_words_count += 1
            
        words_data.append({
            "word": original_words[i],
            "isCorrect": word_is_correct,
            "phonemes": phonemes_data
        })
        
        total_phonemes += sum(1 for p in alignment['target'] if p != '-')

    total_words = len(original_words)
    if len(alignments) < total_words:
        for i in range(len(alignments), total_words):
            missed_word_ipa_str = phonemize(original_words[i], language='de', backend='espeak', strip=True).replace('ː', '')
            missed_word_ipa = _tokenize_ipa(missed_word_ipa_str)
            phonemes_data = []
            for p_ipa in missed_word_ipa:
                phonemes_data.append({"target": p_ipa, "user": "-", "isMatch": False})
                total_errors += 1
                total_phonemes += 1

            words_data.append({
                "word": original_words[i],
                "isCorrect": False,
                "phonemes": phonemes_data
            })

    overall_score = (correct_words_count / total_words) * 100 if total_words > 0 else 0
    phoneme_error_rate = (total_errors / total_phonemes) * 100 if total_phonemes > 0 else 0

    final_result = {
        "sentence": sentence,
        "analysisTimestampUTC": datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S (UTC)'),
        "summary": {
            "overallScore": round(overall_score, 1),
            "totalWords": total_words,
            "correctWords": correct_words_count,
            "phonemeErrorRate": round(phoneme_error_rate, 2),
            "total_errors": total_errors,
            "total_target_phonemes": total_phonemes
        },
        "words": words_data
    }
    
    return final_result