File size: 14,136 Bytes
13d62bd
 
 
bb7c3cd
 
13d62bd
7cb79e8
13d62bd
 
 
bb7c3cd
 
 
c179039
6f1d412
bb7c3cd
 
 
c179039
bb7c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d62bd
bb7c3cd
 
 
13d62bd
 
 
 
7cb79e8
13d62bd
c2784ee
13d62bd
 
 
 
 
 
 
 
 
 
 
c2784ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb7c3cd
aa9eeec
13d62bd
 
a6526f0
13d62bd
a6526f0
 
c2784ee
a6526f0
bb7c3cd
 
a6526f0
 
 
 
 
 
 
 
 
 
c2784ee
 
aa9eeec
13d62bd
 
 
 
 
 
7cb79e8
 
 
13d62bd
 
7cb79e8
bb7c3cd
 
 
 
 
13d62bd
 
8b00763
7cb79e8
8b00763
 
bb7c3cd
 
13d62bd
 
7cb79e8
13d62bd
 
7cb79e8
13d62bd
7cb79e8
13d62bd
 
 
 
 
 
 
 
 
 
 
 
7cb79e8
13d62bd
 
 
 
 
 
 
 
 
 
 
7cb79e8
13d62bd
 
 
7cb79e8
c2784ee
 
 
 
 
 
13d62bd
 
 
c2784ee
 
 
 
 
 
 
 
 
 
 
 
13d62bd
c2784ee
 
 
 
 
 
 
 
 
13d62bd
 
c2784ee
bb7c3cd
 
13d62bd
 
 
 
 
7cb79e8
13d62bd
 
 
 
 
 
7cb79e8
c2784ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13d62bd
7cb79e8
13d62bd
 
 
 
 
7cb79e8
13d62bd
c2784ee
 
 
13d62bd
 
 
 
 
 
7cb79e8
13d62bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cb79e8
c2784ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import torch
import soundfile as sf
import librosa
# 【【【【【 修改 #1:從 transformers 匯入 AutoProcessor 和 AutoModelForCTC 】】】】】
from transformers import AutoProcessor, AutoModelForCTC
import os
from phonemizer import phonemize
import numpy as np
from datetime import datetime, timezone

# --- 全域設定 (已修改) ---
# 移除了全域的 processor 和 model 變數。
# 刪除了舊的 load_model() 函數。
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
print(f"INFO: ASR_en_us.py is configured to use device: {DEVICE}")

# 【【【【【 修改 #2:更新為最終選定的 KoelLabs 模型名稱 】】】】】
MODEL_NAME = "KoelLabs/xlsr-english-01"

# 【【【【【 新增程式碼 #1:為 KoelLabs 模型設計的 IPA 正規化器 】】】】】
# 【保持不變】
def normalize_koel_ipa(raw_phonemes: list) -> list:
    """

    將 KoelLabs 模型輸出的高級 IPA 序列,正規化為與 eSpeak 輸出可比的基礎 IPA 序列。

    """
    normalized_phonemes = []
    for phoneme in raw_phonemes:
        if not phoneme:
            continue
            
        base_phoneme = phoneme.replace('ʰ', '').replace('̃', '').replace('̥', '')
        
        if base_phoneme == 'β':
            base_phoneme = 'v'
        elif base_phoneme in ['x', 'ɣ', 'ɦ']:
            base_phoneme = 'h'
            
        normalized_phonemes.append(base_phoneme)
        
    return normalized_phonemes

# --- 2. 智能 IPA 切分函數 (與您的原版邏輯完全相同) ---
# 【保持不變】
MULTI_CHAR_PHONEMES = {
    'tʃ', 'dʒ',
    'eɪ', 'aɪ', 'oʊ', 'aʊ', 'ɔɪ',
    'ɪə', 'eə', 'ʊə', 'ər'
}

def _tokenize_ipa(ipa_string: str) -> list:
    """

    將 IPA 字串智能地切分為音素列表,能正確處理多字元音素。

    """
    s = ipa_string.replace(' ', '').replace('ˌ', '').replace('ˈ', '').replace('ː', '')
    phonemes = []
    i = 0
    while i < len(s):
        if i + 1 < len(s) and s[i:i+2] in MULTI_CHAR_PHONEMES:
            phonemes.append(s[i:i+2])
            i += 2
        else:
            phonemes.append(s[i])
            i += 1
    return phonemes

# 【【【【【 全新函式:智慧 G2P 歸屬邏輯 - 方案 B 版本 】】】】】
def _get_target_ipa_by_word(sentence: str) -> (list, list):
    """

    使用「啟發式拆分」方法(方案B),將句子級 G2P 結果智慧地歸屬到每個單字。

    """
    original_words = sentence.strip().split()
    
    # 1. 獲取句子級別的 G2P 結果
    sentence_ipa_groups_raw = [s.strip('[]') for s in phonemize(sentence, language='en-us', backend='espeak', with_stress=True, strip=True).split()]
    sentence_ipa_groups = [_tokenize_ipa(group) for group in sentence_ipa_groups_raw]

    # 如果數量剛好匹配,直接返回,這是最理想的情況
    if len(original_words) == len(sentence_ipa_groups):
        print("G2P alignment perfect match. No heuristic needed.")
        return original_words, sentence_ipa_groups

    # 2. 數量不匹配,啟用啟發式歸屬邏輯
    print(f"G2P Mismatch Detected: {len(original_words)} words vs {len(sentence_ipa_groups)} IPA groups. Applying heuristic splitting.")
    
    # 獲取單字級別的 G2P 結果作為參考
    word_ipas_reference = [_tokenize_ipa(phonemize(word, language='en-us', backend='espeak', strip=True)) for word in original_words]

    final_ipa_by_word = []
    word_idx = 0
    ipa_group_idx = 0

    while word_idx < len(original_words):
        # 邊界檢查:如果句子級音標已經用完
        if ipa_group_idx >= len(sentence_ipa_groups):
            print(f"Warning: Ran out of sentence IPA groups. Appending reference IPA for '{original_words[word_idx]}'.")
            final_ipa_by_word.append(word_ipas_reference[word_idx])
            word_idx += 1
            continue

        current_word = original_words[word_idx]
        current_ipa_group = sentence_ipa_groups[ipa_group_idx]
        ref_ipa_len = len(word_ipas_reference[word_idx])
        
        # 啟發式核心:如果當前句子級音標組比參考音標長,且這不是最後一個詞
        if len(current_ipa_group) > ref_ipa_len and word_idx + 1 < len(original_words):
            # 假設多出來的部分屬於下一個詞
            print(f"Heuristic Split: Splitting IPA group for '{current_word}' and '{original_words[word_idx+1]}'.")
            
            # 切分!
            ipa_for_current_word = current_ipa_group[:ref_ipa_len]
            ipa_for_next_word = current_ipa_group[ref_ipa_len:]
            
            final_ipa_by_word.append(ipa_for_current_word)
            final_ipa_by_word.append(ipa_for_next_word)
            
            # 一次處理了兩個詞,所以索引都要加 2
            word_idx += 2
            ipa_group_idx += 1
        else:
            # 正常情況:長度匹配或無法應用啟發式規則
            final_ipa_by_word.append(current_ipa_group)
            word_idx += 1
            ipa_group_idx += 1

    # 最後的長度校驗,如果不匹配,證明啟發式失敗,執行最終回退
    if len(final_ipa_by_word) != len(original_words):
        print(f"Heuristic splitting failed (final count: {len(final_ipa_by_word)} vs {len(original_words)}). Falling back to word-by-word G2P for safety.")
        return original_words, word_ipas_reference

    print("Heuristic splitting successful.")
    return original_words, final_ipa_by_word


# --- 3. 核心分析函數 (主入口) (已修改以整合正規化器和快取邏輯) ---
def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dict:
    """

    接收音訊檔案路徑和目標句子,回傳詳細的發音分析字典。

    模型會被載入並儲存在此函數獨立的 'cache' 中,實現狀態隔離。

    """
    # 檢查快取中是否已有模型,如果沒有則載入
    if "model" not in cache:
        print(f"快取未命中 (ASR_en_us)。正在載入模型 '{MODEL_NAME}'...")
        try:
            cache["processor"] = AutoProcessor.from_pretrained(MODEL_NAME)
            cache["model"] = AutoModelForCTC.from_pretrained(MODEL_NAME)
            cache["model"].to(DEVICE)
            print(f"模型 '{MODEL_NAME}' 已載入並快取。")
        except Exception as e:
            print(f"處理或載入模型 '{MODEL_NAME}' 時發生錯誤: {e}")
            raise RuntimeError(f"Failed to load model '{MODEL_NAME}': {e}")

    # 從此函數的獨立快取中獲取模型和處理器
    processor = cache["processor"]
    model = cache["model"]

    # --- 【【【【【 主要修改點:使用新的智慧 G2P 函式 】】】】】 ---
    target_words_original, target_ipa_by_word = _get_target_ipa_by_word(target_sentence)
    
    try:
        speech, sample_rate = sf.read(audio_file_path)
        if sample_rate != 16000:
            speech = librosa.resample(y=speech, orig_sr=sample_rate, target_sr=16000)
    except Exception as e:
        raise IOError(f"讀取或處理音訊時發生錯誤: {e}")
    
    input_values = processor(speech, sampling_rate=16000, return_tensors="pt").input_values
    input_values = input_values.to(DEVICE)
    with torch.no_grad():
        logits = model(input_values).logits
    predicted_ids = torch.argmax(logits, dim=-1)
    
    raw_user_ipa_str = processor.decode(predicted_ids[0])
    raw_user_phonemes = raw_user_ipa_str.split(' ')
    normalized_user_phonemes = normalize_koel_ipa(raw_user_phonemes)
    user_ipa_full = "".join(normalized_user_phonemes)

    word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word)

    return _format_to_json_structure(word_alignments, target_sentence, target_words_original)


# --- 4. 對齊函數 (與您的原版邏輯完全相同) ---
# 【保持不變】
def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized):
    """

    (已修改) 使用新的切分邏輯執行音素對齊。

    """
    user_phonemes = _tokenize_ipa(user_phoneme_str)
    
    target_phonemes_flat = []
    word_boundaries_indices = [] 
    current_idx = 0
    for word_ipa_tokens in target_words_ipa_tokenized:
        target_phonemes_flat.extend(word_ipa_tokens)
        current_idx += len(word_ipa_tokens)
        word_boundaries_indices.append(current_idx - 1)

    dp = np.zeros((len(user_phonemes) + 1, len(target_phonemes_flat) + 1))
    for i in range(1, len(user_phonemes) + 1): dp[i][0] = i
    for j in range(1, len(target_phonemes_flat) + 1): dp[0][j] = j
    for i in range(1, len(user_phonemes) + 1):
        for j in range(1, len(target_phonemes_flat) + 1):
            cost = 0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1
            dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1, dp[i-1][j-1] + cost)

    i, j = len(user_phonemes), len(target_phonemes_flat)
    user_path, target_path = [], []
    while i > 0 or j > 0:
        cost = float('inf') if i == 0 or j == 0 else (0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1)
        if i > 0 and j > 0 and dp[i][j] == dp[i-1][j-1] + cost:
            user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, target_phonemes_flat[j-1]); i -= 1; j -= 1
        elif i > 0 and dp[i][j] == dp[i-1][j] + 1:
            user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, '-'); i -= 1
        else:
            user_path.insert(0, '-'); target_path.insert(0, target_phonemes_flat[j-1]); j -= 1
    
    alignments_by_word = []
    word_start_idx_in_path = 0
    target_phoneme_counter_in_path = 0

    num_words_to_align = len(target_words_ipa_tokenized)
    current_word_idx = 0
    
    if not target_path:
        return []

    for path_idx, p in enumerate(target_path):
        if p != '-':
            if target_phoneme_counter_in_path in word_boundaries_indices:
                if current_word_idx < num_words_to_align:
                    target_alignment = target_path[word_start_idx_in_path : path_idx + 1]
                    user_alignment = user_path[word_start_idx_in_path : path_idx + 1]
                    
                    alignments_by_word.append({
                        "target": target_alignment,
                        "user": user_alignment
                    })
                    
                    word_start_idx_in_path = path_idx + 1
                    current_word_idx += 1

            target_phoneme_counter_in_path += 1
    
    if word_start_idx_in_path < len(target_path) and current_word_idx < num_words_to_align:
        target_alignment = target_path[word_start_idx_in_path:]
        user_alignment = user_path[word_start_idx_in_path:]
        alignments_by_word.append({
            "target": target_alignment,
            "user": user_alignment
        })

    return alignments_by_word


# --- 5. 格式化函數 (與您的原版邏輯完全相同) ---
# 【保持不變】
def _format_to_json_structure(alignments, sentence, original_words) -> dict:
    total_phonemes = 0
    total_errors = 0
    correct_words_count = 0
    words_data = []

    num_words_to_process = min(len(alignments), len(original_words))

    for i in range(num_words_to_process):
        alignment = alignments[i]
        word_is_correct = True
        phonemes_data = []
        
        if not alignment or not alignment.get('target'):
            word_is_correct = False
        else:
            for j in range(len(alignment['target'])):
                target_phoneme = alignment['target'][j]
                user_phoneme = alignment['user'][j]
                is_match = (user_phoneme == target_phoneme)
                
                phonemes_data.append({
                    "target": target_phoneme,
                    "user": user_phoneme,
                    "isMatch": is_match
                })
                
                if not is_match:
                    word_is_correct = False
                    if not (user_phoneme == '-' and target_phoneme == '-'):
                        total_errors += 1
            total_phonemes += sum(1 for p in alignment['target'] if p != '-')

        if word_is_correct and phonemes_data:
            correct_words_count += 1
            
        words_data.append({
            "word": original_words[i],
            "isCorrect": word_is_correct,
            "phonemes": phonemes_data
        })
        
    total_words = len(original_words)
    if len(words_data) < total_words:
        for i in range(len(words_data), total_words):
            missed_word_ipa_str = phonemize(original_words[i], language='en-us', backend='espeak', strip=True)
            missed_word_ipa = _tokenize_ipa(missed_word_ipa_str)
            phonemes_data = []
            for p_ipa in missed_word_ipa:
                phonemes_data.append({"target": p_ipa, "user": "-", "isMatch": False})
                total_errors += 1
                total_phonemes += 1

            words_data.append({
                "word": original_words[i],
                "isCorrect": False,
                "phonemes": phonemes_data
            })

    overall_score = (correct_words_count / total_words) * 100 if total_words > 0 else 0
    phoneme_error_rate = (total_errors / total_phonemes) * 100 if total_phonemes > 0 else 0

    final_result = {
        "sentence": sentence,
        "analysisTimestampUTC": datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S (UTC)'),
        "summary": {
            "overallScore": round(overall_score, 1),
            "totalWords": total_words,
            "correctWords": correct_words_count,
            "phonemeErrorRate": round(phoneme_error_rate, 2),
            "total_errors": total_errors,
            "total_target_phonemes": total_phonemes
        },
        "words": words_data
    }
    
    return final_result