import torch import soundfile as sf import librosa # 【【【【【 修改 #1:從 transformers 匯入 AutoProcessor 和 AutoModelForCTC 】】】】】 from transformers import AutoProcessor, AutoModelForCTC import os from phonemizer import phonemize import numpy as np from datetime import datetime, timezone # --- 全域設定 (已修改) --- # 移除了全域的 processor 和 model 變數。 # 刪除了舊的 load_model() 函數。 DEVICE = "cuda" if torch.cuda.is_available() else "cpu" print(f"INFO: ASR_en_us.py is configured to use device: {DEVICE}") # 【【【【【 修改 #2:更新為最終選定的 KoelLabs 模型名稱 】】】】】 MODEL_NAME = "KoelLabs/xlsr-english-01" # 【【【【【 新增程式碼 #1:為 KoelLabs 模型設計的 IPA 正規化器 】】】】】 # 【保持不變】 def normalize_koel_ipa(raw_phonemes: list) -> list: """ 將 KoelLabs 模型輸出的高級 IPA 序列,正規化為與 eSpeak 輸出可比的基礎 IPA 序列。 """ normalized_phonemes = [] for phoneme in raw_phonemes: if not phoneme: continue base_phoneme = phoneme.replace('ʰ', '').replace('̃', '').replace('̥', '') if base_phoneme == 'β': base_phoneme = 'v' elif base_phoneme in ['x', 'ɣ', 'ɦ']: base_phoneme = 'h' normalized_phonemes.append(base_phoneme) return normalized_phonemes # --- 2. 智能 IPA 切分函數 (與您的原版邏輯完全相同) --- # 【保持不變】 MULTI_CHAR_PHONEMES = { 'tʃ', 'dʒ', 'eɪ', 'aɪ', 'oʊ', 'aʊ', 'ɔɪ', 'ɪə', 'eə', 'ʊə', 'ər' } def _tokenize_ipa(ipa_string: str) -> list: """ 將 IPA 字串智能地切分為音素列表,能正確處理多字元音素。 """ s = ipa_string.replace(' ', '').replace('ˌ', '').replace('ˈ', '').replace('ː', '') phonemes = [] i = 0 while i < len(s): if i + 1 < len(s) and s[i:i+2] in MULTI_CHAR_PHONEMES: phonemes.append(s[i:i+2]) i += 2 else: phonemes.append(s[i]) i += 1 return phonemes # 【【【【【 全新函式:智慧 G2P 歸屬邏輯 - 方案 B 版本 】】】】】 def _get_target_ipa_by_word(sentence: str) -> (list, list): """ 使用「啟發式拆分」方法(方案B),將句子級 G2P 結果智慧地歸屬到每個單字。 """ original_words = sentence.strip().split() # 1. 獲取句子級別的 G2P 結果 sentence_ipa_groups_raw = [s.strip('[]') for s in phonemize(sentence, language='en-us', backend='espeak', with_stress=True, strip=True).split()] sentence_ipa_groups = [_tokenize_ipa(group) for group in sentence_ipa_groups_raw] # 如果數量剛好匹配,直接返回,這是最理想的情況 if len(original_words) == len(sentence_ipa_groups): print("G2P alignment perfect match. No heuristic needed.") return original_words, sentence_ipa_groups # 2. 數量不匹配,啟用啟發式歸屬邏輯 print(f"G2P Mismatch Detected: {len(original_words)} words vs {len(sentence_ipa_groups)} IPA groups. Applying heuristic splitting.") # 獲取單字級別的 G2P 結果作為參考 word_ipas_reference = [_tokenize_ipa(phonemize(word, language='en-us', backend='espeak', strip=True)) for word in original_words] final_ipa_by_word = [] word_idx = 0 ipa_group_idx = 0 while word_idx < len(original_words): # 邊界檢查:如果句子級音標已經用完 if ipa_group_idx >= len(sentence_ipa_groups): print(f"Warning: Ran out of sentence IPA groups. Appending reference IPA for '{original_words[word_idx]}'.") final_ipa_by_word.append(word_ipas_reference[word_idx]) word_idx += 1 continue current_word = original_words[word_idx] current_ipa_group = sentence_ipa_groups[ipa_group_idx] ref_ipa_len = len(word_ipas_reference[word_idx]) # 啟發式核心:如果當前句子級音標組比參考音標長,且這不是最後一個詞 if len(current_ipa_group) > ref_ipa_len and word_idx + 1 < len(original_words): # 假設多出來的部分屬於下一個詞 print(f"Heuristic Split: Splitting IPA group for '{current_word}' and '{original_words[word_idx+1]}'.") # 切分! ipa_for_current_word = current_ipa_group[:ref_ipa_len] ipa_for_next_word = current_ipa_group[ref_ipa_len:] final_ipa_by_word.append(ipa_for_current_word) final_ipa_by_word.append(ipa_for_next_word) # 一次處理了兩個詞,所以索引都要加 2 word_idx += 2 ipa_group_idx += 1 else: # 正常情況:長度匹配或無法應用啟發式規則 final_ipa_by_word.append(current_ipa_group) word_idx += 1 ipa_group_idx += 1 # 最後的長度校驗,如果不匹配,證明啟發式失敗,執行最終回退 if len(final_ipa_by_word) != len(original_words): print(f"Heuristic splitting failed (final count: {len(final_ipa_by_word)} vs {len(original_words)}). Falling back to word-by-word G2P for safety.") return original_words, word_ipas_reference print("Heuristic splitting successful.") return original_words, final_ipa_by_word # --- 3. 核心分析函數 (主入口) (已修改以整合正規化器和快取邏輯) --- def analyze(audio_file_path: str, target_sentence: str, cache: dict = {}) -> dict: """ 接收音訊檔案路徑和目標句子,回傳詳細的發音分析字典。 模型會被載入並儲存在此函數獨立的 'cache' 中,實現狀態隔離。 """ # 檢查快取中是否已有模型,如果沒有則載入 if "model" not in cache: print(f"快取未命中 (ASR_en_us)。正在載入模型 '{MODEL_NAME}'...") try: cache["processor"] = AutoProcessor.from_pretrained(MODEL_NAME) cache["model"] = AutoModelForCTC.from_pretrained(MODEL_NAME) cache["model"].to(DEVICE) print(f"模型 '{MODEL_NAME}' 已載入並快取。") except Exception as e: print(f"處理或載入模型 '{MODEL_NAME}' 時發生錯誤: {e}") raise RuntimeError(f"Failed to load model '{MODEL_NAME}': {e}") # 從此函數的獨立快取中獲取模型和處理器 processor = cache["processor"] model = cache["model"] # --- 【【【【【 主要修改點:使用新的智慧 G2P 函式 】】】】】 --- target_words_original, target_ipa_by_word = _get_target_ipa_by_word(target_sentence) try: speech, sample_rate = sf.read(audio_file_path) if sample_rate != 16000: speech = librosa.resample(y=speech, orig_sr=sample_rate, target_sr=16000) except Exception as e: raise IOError(f"讀取或處理音訊時發生錯誤: {e}") input_values = processor(speech, sampling_rate=16000, return_tensors="pt").input_values input_values = input_values.to(DEVICE) with torch.no_grad(): logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) raw_user_ipa_str = processor.decode(predicted_ids[0]) raw_user_phonemes = raw_user_ipa_str.split(' ') normalized_user_phonemes = normalize_koel_ipa(raw_user_phonemes) user_ipa_full = "".join(normalized_user_phonemes) word_alignments = _get_phoneme_alignments_by_word(user_ipa_full, target_ipa_by_word) return _format_to_json_structure(word_alignments, target_sentence, target_words_original) # --- 4. 對齊函數 (與您的原版邏輯完全相同) --- # 【保持不變】 def _get_phoneme_alignments_by_word(user_phoneme_str, target_words_ipa_tokenized): """ (已修改) 使用新的切分邏輯執行音素對齊。 """ user_phonemes = _tokenize_ipa(user_phoneme_str) target_phonemes_flat = [] word_boundaries_indices = [] current_idx = 0 for word_ipa_tokens in target_words_ipa_tokenized: target_phonemes_flat.extend(word_ipa_tokens) current_idx += len(word_ipa_tokens) word_boundaries_indices.append(current_idx - 1) dp = np.zeros((len(user_phonemes) + 1, len(target_phonemes_flat) + 1)) for i in range(1, len(user_phonemes) + 1): dp[i][0] = i for j in range(1, len(target_phonemes_flat) + 1): dp[0][j] = j for i in range(1, len(user_phonemes) + 1): for j in range(1, len(target_phonemes_flat) + 1): cost = 0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1 dp[i][j] = min(dp[i-1][j] + 1, dp[i][j-1] + 1, dp[i-1][j-1] + cost) i, j = len(user_phonemes), len(target_phonemes_flat) user_path, target_path = [], [] while i > 0 or j > 0: cost = float('inf') if i == 0 or j == 0 else (0 if user_phonemes[i-1] == target_phonemes_flat[j-1] else 1) if i > 0 and j > 0 and dp[i][j] == dp[i-1][j-1] + cost: user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, target_phonemes_flat[j-1]); i -= 1; j -= 1 elif i > 0 and dp[i][j] == dp[i-1][j] + 1: user_path.insert(0, user_phonemes[i-1]); target_path.insert(0, '-'); i -= 1 else: user_path.insert(0, '-'); target_path.insert(0, target_phonemes_flat[j-1]); j -= 1 alignments_by_word = [] word_start_idx_in_path = 0 target_phoneme_counter_in_path = 0 num_words_to_align = len(target_words_ipa_tokenized) current_word_idx = 0 if not target_path: return [] for path_idx, p in enumerate(target_path): if p != '-': if target_phoneme_counter_in_path in word_boundaries_indices: if current_word_idx < num_words_to_align: target_alignment = target_path[word_start_idx_in_path : path_idx + 1] user_alignment = user_path[word_start_idx_in_path : path_idx + 1] alignments_by_word.append({ "target": target_alignment, "user": user_alignment }) word_start_idx_in_path = path_idx + 1 current_word_idx += 1 target_phoneme_counter_in_path += 1 if word_start_idx_in_path < len(target_path) and current_word_idx < num_words_to_align: target_alignment = target_path[word_start_idx_in_path:] user_alignment = user_path[word_start_idx_in_path:] alignments_by_word.append({ "target": target_alignment, "user": user_alignment }) return alignments_by_word # --- 5. 格式化函數 (與您的原版邏輯完全相同) --- # 【保持不變】 def _format_to_json_structure(alignments, sentence, original_words) -> dict: total_phonemes = 0 total_errors = 0 correct_words_count = 0 words_data = [] num_words_to_process = min(len(alignments), len(original_words)) for i in range(num_words_to_process): alignment = alignments[i] word_is_correct = True phonemes_data = [] if not alignment or not alignment.get('target'): word_is_correct = False else: for j in range(len(alignment['target'])): target_phoneme = alignment['target'][j] user_phoneme = alignment['user'][j] is_match = (user_phoneme == target_phoneme) phonemes_data.append({ "target": target_phoneme, "user": user_phoneme, "isMatch": is_match }) if not is_match: word_is_correct = False if not (user_phoneme == '-' and target_phoneme == '-'): total_errors += 1 total_phonemes += sum(1 for p in alignment['target'] if p != '-') if word_is_correct and phonemes_data: correct_words_count += 1 words_data.append({ "word": original_words[i], "isCorrect": word_is_correct, "phonemes": phonemes_data }) total_words = len(original_words) if len(words_data) < total_words: for i in range(len(words_data), total_words): missed_word_ipa_str = phonemize(original_words[i], language='en-us', backend='espeak', strip=True) missed_word_ipa = _tokenize_ipa(missed_word_ipa_str) phonemes_data = [] for p_ipa in missed_word_ipa: phonemes_data.append({"target": p_ipa, "user": "-", "isMatch": False}) total_errors += 1 total_phonemes += 1 words_data.append({ "word": original_words[i], "isCorrect": False, "phonemes": phonemes_data }) overall_score = (correct_words_count / total_words) * 100 if total_words > 0 else 0 phoneme_error_rate = (total_errors / total_phonemes) * 100 if total_phonemes > 0 else 0 final_result = { "sentence": sentence, "analysisTimestampUTC": datetime.now(timezone.utc).strftime('%Y-%m-%d %H:%M:%S (UTC)'), "summary": { "overallScore": round(overall_score, 1), "totalWords": total_words, "correctWords": correct_words_count, "phonemeErrorRate": round(phoneme_error_rate, 2), "total_errors": total_errors, "total_target_phonemes": total_phonemes }, "words": words_data } return final_result