File size: 5,938 Bytes
efa06b4
 
 
 
 
 
 
 
 
 
 
 
7dd3ffd
efa06b4
 
 
 
6db8de6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd3ffd
efa06b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73cf928
d02c1e3
73cf928
 
 
efa06b4
7dd3ffd
 
 
 
 
efa06b4
 
7dd3ffd
efa06b4
7dd3ffd
efa06b4
7dd3ffd
efa06b4
7dd3ffd
efa06b4
 
 
 
 
 
 
 
 
 
 
7dd3ffd
efa06b4
 
 
 
 
 
 
7dd3ffd
efa06b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import pandas as pd
import plotly.express as px

from config.constants import (
    CC_BENCHMARKS,
    LC_BENCHMARKS,
    NON_RTL_METRICS,
    RTL_METRICS,
    S2R_BENCHMARKS,
    SCATTER_PLOT_X_TICKS,
    TYPE_COLORS,
    Y_AXIS_LIMITS,
    DISCARDED_MODELS,
)
from utils import filter_bench, filter_bench_all, filter_RTLRepo, handle_special_cases


# this is just a simple class to load the correct data depending on which sim we are at
class Simulator:
    def __init__(self, icarus_df, icarus_agg, verilator_df, verilator_agg):
        self.icarus_df = icarus_df
        self.icarus_agg = icarus_agg
        self.verilator_df = verilator_df
        self.verilator_agg = verilator_agg
        self.current_simulator = "Icarus"

    def get_current_df(self):
        if self.current_simulator == "Icarus":
            return self.icarus_df
        else:
            return self.verilator_df

    def get_current_agg(self):
        if self.current_simulator == "Icarus":
            return self.icarus_agg
        else:
            return self.verilator_agg

    def set_simulator(self, simulator):
        self.current_simulator = simulator


# filtering main function for the leaderboard body
def filter_leaderboard(task, benchmark, model_type, search_query, max_params, state, name):
    """Filter leaderboard data based on user selections."""
    subset = state.get_current_df().copy()

    # Filter by task specific benchmarks when 'All' benchmarks is selected
    if task == "Spec-to-RTL":
        valid_benchmarks = S2R_BENCHMARKS
        if benchmark == "All":
            subset = subset[subset["Benchmark"].isin(valid_benchmarks)]
    elif task == "Code Completion":
        valid_benchmarks = CC_BENCHMARKS
        if benchmark == "All":
            subset = subset[subset["Benchmark"].isin(valid_benchmarks)]
    elif task == "Line Completion †":
        valid_benchmarks = LC_BENCHMARKS
        if benchmark == "All":
            subset = subset[subset["Benchmark"].isin(valid_benchmarks)]

    if benchmark != "All":
        subset = state.get_current_df()[state.get_current_df()["Benchmark"] == benchmark]

    if model_type != "All":
        # without emojis
        subset = subset[subset["Model Type"] == model_type.split(" ")[0]]
    if search_query:
        subset = subset[subset["Model"].str.contains(search_query, case=False, na=False)]
    max_params = float(max_params)

    if max_params < 995: # when re-setting the max param slider we never reach 1000 again xd
        subset = subset[subset["Params"] <= max_params]
    else:
        subset["Params"] = subset["Params"].fillna("Unknown")

    if name == "Other Models":
        subset = subset[subset["Model"].isin(DISCARDED_MODELS)]
    else:
        subset = subset[~subset["Model"].isin(DISCARDED_MODELS)]

    if benchmark == "All":
        if task == "Spec-to-RTL":
            return filter_bench_all(subset, state.get_current_agg(), agg_column="Agg S2R", name=name)
        elif task == "Code Completion":
            return filter_bench_all(subset, state.get_current_agg(), agg_column="Agg MC", name=name)
        elif task == "Line Completion †":
            return filter_RTLRepo(subset, name=name)
    elif benchmark == "RTL-Repo":
        return filter_RTLRepo(subset, name=name)
    else:
        agg_column = None
        if benchmark == "VerilogEval S2R":
            agg_column = "Agg VerilogEval S2R"
        elif benchmark == "VerilogEval MC":
            agg_column = "Agg VerilogEval MC"
        elif benchmark == "RTLLM":
            agg_column = "Agg RTLLM"
        elif benchmark == "VeriGen":
            agg_column = "Agg VeriGen"

        return filter_bench(subset, state.get_current_agg(), agg_column, name=name)


def generate_scatter_plot(benchmark, metric, state):
    """Generate a scatter plot for the given benchmark and metric."""
    benchmark, metric = handle_special_cases(benchmark, metric)

    subset = state.get_current_df()[state.get_current_df()["Benchmark"] == benchmark]
    subset = subset[~subset["Model"].isin(DISCARDED_MODELS)]
    if benchmark == "RTL-Repo":
        subset = subset[subset["Metric"].str.contains("EM", case=False, na=False)]
        detailed_scores = subset.groupby("Model", as_index=False)["Score"].mean()
        detailed_scores.rename(columns={"Score": "Exact Matching (EM)"}, inplace=True)
    else:
        detailed_scores = subset.pivot_table(index="Model", columns="Metric", values="Score").reset_index()

    details = state.get_current_df()[["Model", "Params", "Model Type"]].drop_duplicates("Model")
    scatter_data = pd.merge(detailed_scores, details, on="Model", how="left").dropna(
        subset=["Params", metric]
    )

    scatter_data["x"] = scatter_data["Params"]
    scatter_data["y"] = scatter_data[metric]
    scatter_data["size"] = (scatter_data["x"] ** 0.3) * 40

    scatter_data["color"] = scatter_data["Model Type"].map(TYPE_COLORS).fillna("gray")

    y_range = Y_AXIS_LIMITS.get(metric, [0, 80])

    fig = px.scatter(
        scatter_data,
        x="x",
        y="y",
        log_x=True,
        size="size",
        color="Model Type",
        text="Model",
        hover_data={metric: ":.2f"},
        title=f"Params vs. {metric} for {benchmark}",
        labels={"x": "# Params (Log Scale)", "y": metric},
        template="plotly_white",
        height=600,
        width=1200,
    )

    fig.update_traces(
        textposition="top center",
        textfont_size=10,
        marker=dict(opacity=0.8, line=dict(width=0.5, color="black")),
    )
    fig.update_layout(
        xaxis=dict(
            showgrid=True,
            type="log",
            tickmode="array",
            tickvals=SCATTER_PLOT_X_TICKS["tickvals"],
            ticktext=SCATTER_PLOT_X_TICKS["ticktext"],
        ),
        showlegend=False,
        yaxis=dict(range=y_range),
        margin=dict(l=50, r=50, t=50, b=50),
        plot_bgcolor="white",
    )

    return fig