File size: 5,068 Bytes
ce4c25e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd3ffd
ce4c25e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd3ffd
ce4c25e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd3ffd
ce4c25e
 
 
 
 
 
 
 
 
 
7dd3ffd
ce4c25e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
"""Event handlers for the TuRTLe leaderboard."""

import gradio as gr

from config.constants import (
    CC_BENCHMARKS,
    LC_BENCHMARKS,
    NON_RTL_METRICS,
    RTL_METRICS,
    S2R_BENCHMARKS,
)
from utils import handle_special_cases


def create_leaderboard_handlers(
    filter_leaderboard_fn,
    generate_scatter_plot_fn,
    task_radio,
    benchmark_radio,
    model_type_dropdown,
    search_box,
    params_slider,
    bubble_benchmark,
    bubble_metric,
    scatter_plot,
    leaderboard,
    simulator_radio,
    state,
    name,
):
    def update_benchmarks_by_task(task):
        if task == "Spec-to-RTL":
            new_benchmarks = ["All"] + S2R_BENCHMARKS
        elif task == "Code Completion":
            new_benchmarks = ["All"] + CC_BENCHMARKS
        elif task == "Line Completion †":
            new_benchmarks = LC_BENCHMARKS
        else:
            new_benchmarks = ["All"]

        benchmark_value = "All" if "All" in new_benchmarks else new_benchmarks[0]
        filtered = filter_leaderboard_fn(
            task,
            benchmark_value,
            model_type_dropdown.value,
            search_box.value,
            params_slider.value,
            state,
            name,
        )
        return gr.update(value=benchmark_value, choices=new_benchmarks), filtered

    def on_benchmark_change(benchmark, _):
        if benchmark == "RTL-Repo":
            metric = "Exact Matching (EM)"
            return gr.update(choices=RTL_METRICS, value=metric), generate_scatter_plot_fn(
                benchmark, metric, state
            )
        else:
            metric = NON_RTL_METRICS[0]
            return gr.update(choices=NON_RTL_METRICS[:-1], value=metric), generate_scatter_plot_fn(
                benchmark, metric, state
            )

    def on_metric_change(benchmark, metric):
        benchmark, metric = handle_special_cases(benchmark, metric)
        fig = generate_scatter_plot_fn(benchmark, metric, state)
        return gr.update(value=benchmark), fig

    def on_simulator_change(
        simulator,
        task,
        benchmark,
        model_type,
        search,
        max_params,
        plot_bench,
        plot_metric,
    ):
        state.set_simulator(simulator)

        leaderboard_df = filter_leaderboard_fn(task, benchmark, model_type, search, max_params, state, name)
        fig = generate_scatter_plot_fn(plot_bench, plot_metric, state)
        return leaderboard_df, fig

    task_radio.change(
        fn=update_benchmarks_by_task,
        inputs=[task_radio],
        outputs=[benchmark_radio, leaderboard],
    )

    def filter_with_state(task, benchmark, model_type, search, max_params):
        return filter_leaderboard_fn(task, benchmark, model_type, search, max_params, state, name)

    benchmark_radio.change(
        fn=filter_with_state,
        inputs=[
            task_radio,
            benchmark_radio,
            model_type_dropdown,
            search_box,
            params_slider,
        ],
        outputs=leaderboard,
    )

    model_type_dropdown.change(
        fn=filter_with_state,
        inputs=[
            task_radio,
            benchmark_radio,
            model_type_dropdown,
            search_box,
            params_slider,
        ],
        outputs=leaderboard,
    )

    search_box.change(
        fn=filter_with_state,
        inputs=[
            task_radio,
            benchmark_radio,
            model_type_dropdown,
            search_box,
            params_slider,
        ],
        outputs=leaderboard,
    )

    params_slider.change(
        fn=filter_with_state,
        inputs=[
            task_radio,
            benchmark_radio,
            model_type_dropdown,
            search_box,
            params_slider,
        ],
        outputs=leaderboard,
    )

    # Scroll preservation JS for plot updates
    scroll_preserve_js = """
    // This is to avoid resetting user scroll each time a plot is re-generated
    (benchmark, metric) => {
        let scrollY = window.scrollY;
        const observer = new MutationObserver(() => {
            window.scrollTo(0, scrollY);
            observer.disconnect();
        });
        observer.observe(document.getElementById('full-width-plot'), { childList: true });
        return [benchmark, metric];
    }
    """

    bubble_benchmark.change(
        fn=on_benchmark_change,
        inputs=[bubble_benchmark, bubble_metric],
        outputs=[bubble_metric, scatter_plot],
        js=scroll_preserve_js,
    )

    bubble_metric.change(
        fn=on_metric_change,
        inputs=[bubble_benchmark, bubble_metric],
        outputs=[bubble_benchmark, scatter_plot],
        js=scroll_preserve_js,
    )

    simulator_radio.change(
        fn=on_simulator_change,
        inputs=[
            simulator_radio,
            task_radio,
            benchmark_radio,
            model_type_dropdown,
            search_box,
            params_slider,
            bubble_benchmark,
            bubble_metric,
        ],
        outputs=[leaderboard, scatter_plot],
    )