Spaces:
Sleeping
Sleeping
Erva Ulusoy
commited on
Commit
·
c712316
1
Parent(s):
968c130
initialize space
Browse files- data/finalized_domain2go_mappings.txt +0 -0
- domain2go_app.py +134 -0
- requirements.txt +9 -0
- run_domain2go_app.py +115 -0
data/finalized_domain2go_mappings.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
domain2go_app.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import requests
|
| 3 |
+
from io import StringIO
|
| 4 |
+
from Bio import SeqIO
|
| 5 |
+
import os
|
| 6 |
+
import time
|
| 7 |
+
import pandas as pd
|
| 8 |
+
|
| 9 |
+
from run_domain2go_app import *
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def convert_df(df):
|
| 13 |
+
return df.to_csv(index=False).encode('utf-8')
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
st.markdown("""
|
| 17 |
+
<div style="background-color:#f9f9f9;padding:10px">
|
| 18 |
+
<p style="color:#b22d2a;font-size:15px;">Disclaimer</p>
|
| 19 |
+
<p style="color:#000000;font-size:14px;">This program is designed to generate predictions for a single protein due to the extended runtime of InterProScan. If you need predictions for multiple UniProtKB/Swiss-Prot proteins, we recommend utilizing our comprehensive protein function prediction dataset available in our <a href="https://github.com/HUBioDataLab/Domain2GO">Github repository</a>.</p>
|
| 20 |
+
</div>
|
| 21 |
+
""", unsafe_allow_html=True)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
domain_tab, pred_tab = st.tabs(['Domains', 'Function predictions'])
|
| 26 |
+
|
| 27 |
+
with domain_tab:
|
| 28 |
+
st.header('Domains in sequence')
|
| 29 |
+
|
| 30 |
+
with st.sidebar:
|
| 31 |
+
|
| 32 |
+
st.title("Domain2GO: Mutual Annotation-Based Prediction of Protein Domain Functions")
|
| 33 |
+
st.write("[](https://www.biorxiv.org/content/10.1101/2022.11.03.514980v1) [](https://github.com/HUBioDataLab/Domain2GO)")
|
| 34 |
+
|
| 35 |
+
if 'example_seq_button' not in st.session_state:
|
| 36 |
+
st.session_state.example_seq_button = False
|
| 37 |
+
|
| 38 |
+
def click_button():
|
| 39 |
+
st.session_state.example_seq_button = not st.session_state.example_seq_button
|
| 40 |
+
|
| 41 |
+
input_type = st.radio('Select input type', ['Enter sequence', 'Upload FASTA file'])
|
| 42 |
+
if input_type == 'Enter sequence':
|
| 43 |
+
if st.session_state.example_seq_button:
|
| 44 |
+
sequence = st.text_area('Enter protein sequence in FASTA format.',
|
| 45 |
+
value='>sp|O18783|PLMN_NOTEU\n'
|
| 46 |
+
'MEYGKVIFLFLLFLKSGQGESLENYIKTEGASLSNSQKKQFVASSTEECEALCEKETEFVCRSFEHYNKEQKCVIMSENSKTSSVERKRDVVLFEKRIYLSDCKSGNGRNYRGTLSKTKSGITCQKWSDLSPHVPNYAPSKYPDAGLEKNYCRNPDDDVKGPWCYTTNPDIRYEYCDVPECEDECMHCSGENYRGTISKTESGIECQPWDSQEPHSHEYIPSKFPSKDLKENYCRNPDGEPRPWCFTSNPEKRWEFCNIPRCSSPPPPPGPMLQCLKGRGENYRGKIAVTKSGHTCQRWNKQTPHKHNRTPENFPCRGLDENYCRNPDGELEPWCYTTNPDVRQEYCAIPSCGTSSPHTDRVEQSPVIQECYEGKGENYRGTTSTTISGKKCQAWSSMTPHQHKKTPDNFPNADLIRNYCRNPDGDKSPWCYTMDPTVRWEFCNLEKCSGTGSTVLNAQTTRVPSVDTTSHPESDCMYGSGKDYRGKRSTTVTGTLCQAWTAQEPHRHTIFTPDTYPRAGLEENYCRNPDGDPNGPWCYTTNPKKLFDYCDIPQCVSPSSFDCGKPRVEPQKCPGRIVGGCYAQPHSWPWQISLRTRFGEHFCGGTLIAPQWVLTAAHCLERSQWPGAYKVILGLHREVNPESYSQEIGVSRLFKGPLAADIALLKLNRPAAINDKVIPACLPSQDFMVPDRTLCHVTGWGDTQGTSPRGLLKQASLPVIDNRVCNRHEYLNGRVKSTELCAGHLVGRGDSCQGDSGGPLICFEDDKYVLQGVTSWGLGCARPNKPGVYVRVSRYISWIEDVMKNN')
|
| 47 |
+
else:
|
| 48 |
+
sequence = st.text_input('Enter protein sequence in FASTA format.')
|
| 49 |
+
name = sequence.split('\n')[0].strip('>')
|
| 50 |
+
st.button('Use example sequence', on_click=click_button)
|
| 51 |
+
else:
|
| 52 |
+
protein_input = st.file_uploader('Choose file')
|
| 53 |
+
if protein_input:
|
| 54 |
+
protein_input_stringio = StringIO(protein_input.getvalue().decode("utf-8"))
|
| 55 |
+
fasta_sequences = SeqIO.parse(protein_input_stringio, 'fasta')
|
| 56 |
+
for fasta in fasta_sequences:
|
| 57 |
+
name, sequence = fasta.id, str(fasta.seq)
|
| 58 |
+
|
| 59 |
+
email = st.text_input('Enter your email for InterProScan query: ')
|
| 60 |
+
|
| 61 |
+
# prevent user from clicking 'Find domains' button if email or sequence is empty
|
| 62 |
+
domains_submitted = False
|
| 63 |
+
if st.button('Find domains'):
|
| 64 |
+
if email and sequence:
|
| 65 |
+
domains_submitted = True
|
| 66 |
+
st.session_state.disabled = True
|
| 67 |
+
else:
|
| 68 |
+
st.warning('Please enter your email and protein sequence first.')
|
| 69 |
+
else:
|
| 70 |
+
with domain_tab:
|
| 71 |
+
st.warning('Please enter your query and click "Find domains" to see domains in sequence.')
|
| 72 |
+
with domain_tab:
|
| 73 |
+
no_domains = False
|
| 74 |
+
error_in_interproscan = False
|
| 75 |
+
if domains_submitted:
|
| 76 |
+
with st.spinner('Finding domains in sequence using InterProScan. This may take a while...'):
|
| 77 |
+
result = find_domains(email, sequence, name)
|
| 78 |
+
result_text = result[0]
|
| 79 |
+
if result_text == 'Domains found.':
|
| 80 |
+
st.success(result_text + 'You can now see function predictions for the sequence in the "Function predictions" tab.')
|
| 81 |
+
st.session_state['domain_df'] = result[1]
|
| 82 |
+
elif result_text == 'No domains found.':
|
| 83 |
+
st.warning(result_text)
|
| 84 |
+
no_domains = True
|
| 85 |
+
else:
|
| 86 |
+
st.error(result_text)
|
| 87 |
+
st.write(f'InterProScan job id: {result[1]}')
|
| 88 |
+
st.write(f'InterProScan job response: {result[2]}')
|
| 89 |
+
error_in_interproscan = True
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
if 'domain_df' in st.session_state:
|
| 93 |
+
with st.expander('Show domains in sequence'):
|
| 94 |
+
st.write(st.session_state.domain_df)
|
| 95 |
+
domains_csv = convert_df(st.session_state.domain_df)
|
| 96 |
+
st.download_button(
|
| 97 |
+
label="Download domains in sequence as CSV",
|
| 98 |
+
data=domains_csv,
|
| 99 |
+
file_name=f"{name}_domains.csv",
|
| 100 |
+
mime="text/csv",
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
with pred_tab:
|
| 104 |
+
st.header('Function predictions')
|
| 105 |
+
if 'domain_df' not in st.session_state:
|
| 106 |
+
if no_domains:
|
| 107 |
+
st.warning('No domains found. Please find domains in sequence first.')
|
| 108 |
+
elif error_in_interproscan:
|
| 109 |
+
st.error('Error in InterProScan. Please check InterProScan job id and response.')
|
| 110 |
+
else:
|
| 111 |
+
st.warning('Please find domains in sequence first.')
|
| 112 |
+
else:
|
| 113 |
+
with st.spinner('Generating function predictions...'):
|
| 114 |
+
cwd = os.getcwd()
|
| 115 |
+
mapping_path = "{}Domain2GO/data".format(cwd.split("Domain2GO")[0])
|
| 116 |
+
pred_results = generate_function_predictions(st.session_state.domain_df, mapping_path)
|
| 117 |
+
pred_result_text = pred_results[0]
|
| 118 |
+
if pred_result_text == 'Function predictions found.':
|
| 119 |
+
st.success(pred_result_text)
|
| 120 |
+
st.session_state['pred_df'] = pred_results[1]
|
| 121 |
+
elif pred_result_text == 'No function predictions found.':
|
| 122 |
+
st.warning(pred_result_text)
|
| 123 |
+
|
| 124 |
+
if 'pred_df' in st.session_state:
|
| 125 |
+
with st.expander('Show function predictions'):
|
| 126 |
+
st.write(st.session_state.pred_df)
|
| 127 |
+
pred_csv = convert_df(st.session_state.pred_df)
|
| 128 |
+
st.download_button(
|
| 129 |
+
label="Download function predictions as CSV",
|
| 130 |
+
data=pred_csv,
|
| 131 |
+
file_name=f"{name}_function_predictions.csv",
|
| 132 |
+
mime="text/csv",
|
| 133 |
+
)
|
| 134 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This file may be used to create an environment using:
|
| 2 |
+
# $ conda create --name <env> --file <this file>
|
| 3 |
+
|
| 4 |
+
pandas==1.3.2
|
| 5 |
+
dask==2022.2.1
|
| 6 |
+
numpy==1.20.3
|
| 7 |
+
scipy==1.7.1
|
| 8 |
+
requests==2.31.0
|
| 9 |
+
biopython==1.81
|
run_domain2go_app.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from io import StringIO
|
| 3 |
+
from Bio import SeqIO
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
def find_domains(email, sequence, name):
|
| 9 |
+
|
| 10 |
+
# send request to interproscan api
|
| 11 |
+
headers = {
|
| 12 |
+
'Content-Type': 'application/x-www-form-urlencoded',
|
| 13 |
+
'Accept': 'text/plain',
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
data= {
|
| 17 |
+
'email': email,
|
| 18 |
+
'stype': 'p',
|
| 19 |
+
'sequence': f'{sequence}'}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
job_id_response = requests.post('https://www.ebi.ac.uk/Tools/services/rest/iprscan5/run', headers=headers, data=data)
|
| 23 |
+
job_id = job_id_response.text
|
| 24 |
+
|
| 25 |
+
# get results
|
| 26 |
+
|
| 27 |
+
headers = {
|
| 28 |
+
'Accept': 'application/json',
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
job_result_url = f'https://www.ebi.ac.uk/Tools/services/rest/iprscan5/result/{job_id}/json'
|
| 32 |
+
|
| 33 |
+
json_output = None
|
| 34 |
+
entries = dict()
|
| 35 |
+
with requests.Session() as s:
|
| 36 |
+
# try 10 times if not successful print error
|
| 37 |
+
c=0
|
| 38 |
+
while c<10:
|
| 39 |
+
job_result_response = s.get(job_result_url, headers=headers)
|
| 40 |
+
if job_result_response.status_code == 200:
|
| 41 |
+
json_output= job_result_response.json()['results'][0]
|
| 42 |
+
print('InterProScan job done')
|
| 43 |
+
break
|
| 44 |
+
else:
|
| 45 |
+
time.sleep(60)
|
| 46 |
+
c+=1
|
| 47 |
+
|
| 48 |
+
if json_output is None:
|
| 49 |
+
result_text = 'InterProScan job failed'
|
| 50 |
+
return [result_text, job_id, job_result_response.text]
|
| 51 |
+
|
| 52 |
+
else:
|
| 53 |
+
for elem in json_output['matches']:
|
| 54 |
+
entry = elem['signature']['entry']
|
| 55 |
+
|
| 56 |
+
location_list = [f"{i['start']}-{i['end']}" for i in elem['locations']]
|
| 57 |
+
|
| 58 |
+
if type(entry) == dict and entry['type'] == 'DOMAIN':
|
| 59 |
+
if entry['accession'] not in entries:
|
| 60 |
+
entries[entry['accession']] = {
|
| 61 |
+
'name': entry['name'],
|
| 62 |
+
# add locations as a list
|
| 63 |
+
'locations': location_list
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
else:
|
| 67 |
+
try:
|
| 68 |
+
entries[entry['accession']]['locations'].extend(location_list)
|
| 69 |
+
except AttributeError:
|
| 70 |
+
entries[entry['accession']]['locations'] = entries[entry['accession']]['locations'].split(' ')
|
| 71 |
+
entries[entry['accession']]['locations'] = [i for i in entries[entry['accession']]['locations'] if i]
|
| 72 |
+
entries[entry['accession']]['locations'].extend(location_list)
|
| 73 |
+
|
| 74 |
+
entries[entry['accession']]['locations'] = list(set(entries[entry['accession']]['locations']))
|
| 75 |
+
entries[entry['accession']]['locations'] = ';'.join(entries[entry['accession']]['locations'])
|
| 76 |
+
|
| 77 |
+
if entries:
|
| 78 |
+
result_text = 'Domains found.'
|
| 79 |
+
|
| 80 |
+
# create domains dataframe
|
| 81 |
+
domains_df = pd.DataFrame.from_dict(entries, orient='index').reset_index()
|
| 82 |
+
domains_df['protein_name'] = name
|
| 83 |
+
domains_df = domains_df[['protein_name', 'index', 'name', 'locations']]
|
| 84 |
+
domains_df.columns = ['protein_name', 'accession', 'name', 'locations']
|
| 85 |
+
return [result_text, domains_df]
|
| 86 |
+
|
| 87 |
+
else:
|
| 88 |
+
result_text = 'No domains found.'
|
| 89 |
+
return [result_text]
|
| 90 |
+
|
| 91 |
+
# generate protein function predictions based on domain2go mappings
|
| 92 |
+
|
| 93 |
+
def generate_function_predictions(domains_df, mapping_path):
|
| 94 |
+
|
| 95 |
+
# read domain2go mappings
|
| 96 |
+
domain2go_df = pd.read_csv(os.path.join(mapping_path, 'finalized_domain2go_mappings.txt'))
|
| 97 |
+
print('Domain2GO mappings loaded')
|
| 98 |
+
# merge domain2go mappings with domains found in protein sequence
|
| 99 |
+
merged_df = pd.merge(domains_df, domain2go_df, left_on='accession', right_on='Interpro')
|
| 100 |
+
|
| 101 |
+
print('Function predictions generated.')
|
| 102 |
+
|
| 103 |
+
# if merged_df is empty return
|
| 104 |
+
if merged_df.empty:
|
| 105 |
+
result_text = 'No function predictions found.'
|
| 106 |
+
return [result_text]
|
| 107 |
+
|
| 108 |
+
else:
|
| 109 |
+
merged_df = merged_df[['accession', 'name', 'locations', 'GO', 's']]
|
| 110 |
+
merged_df.columns = ['domain_accession', 'domain_name', 'domain_locations', 'GO_id', 'probability']
|
| 111 |
+
|
| 112 |
+
# save protein function predictions
|
| 113 |
+
protein_name = domains_df['protein_name'].iloc[0]
|
| 114 |
+
result_text= 'Function predictions found.'
|
| 115 |
+
return [result_text, merged_df]
|