Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -15,19 +15,19 @@ global data_component, filter_component
|
|
| 15 |
|
| 16 |
def get_baseline_df(selected_methods, selected_metrics):
|
| 17 |
df = pd.read_csv(CSV_RESULT_PATH)
|
| 18 |
-
present_columns = ["
|
| 19 |
-
df = df[df['
|
| 20 |
return df
|
| 21 |
|
| 22 |
# Function to create the plot
|
| 23 |
def create_plot(methods_selected, x_metric, y_metric):
|
| 24 |
df = pd.read_csv(CSV_RESULT_PATH)
|
| 25 |
-
filtered_df = df[df['
|
| 26 |
|
| 27 |
# Create a larger plot
|
| 28 |
plt.figure(figsize=(10, 8)) # Increase the figure size
|
| 29 |
for method in methods_selected:
|
| 30 |
-
method_data = filtered_df[filtered_df['
|
| 31 |
plt.plot(method_data[x_metric], method_data[y_metric], label=method, marker='o')
|
| 32 |
|
| 33 |
plt.xlabel(x_metric)
|
|
@@ -70,12 +70,17 @@ with block:
|
|
| 70 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 71 |
# table jmmmu bench
|
| 72 |
with gr.TabItem("🏅 PROBE Benchmark", elem_id="probe-benchmark-tab-table", id=1):
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
# Leaderboard section with method and metric selectors
|
| 75 |
with gr.Row():
|
| 76 |
# Add method and metric selectors for leaderboard
|
| 77 |
leaderboard_method_selector = gr.CheckboxGroup(
|
| 78 |
-
choices=method_names, label="Select
|
| 79 |
)
|
| 80 |
leaderboard_metric_selector = gr.CheckboxGroup(
|
| 81 |
choices=metric_names, label="Select Metrics for Leaderboard", value=metric_names, interactive=True
|
|
@@ -83,7 +88,7 @@ with block:
|
|
| 83 |
|
| 84 |
# Display the filtered leaderboard
|
| 85 |
baseline_value = get_baseline_df(method_names, metric_names)
|
| 86 |
-
baseline_header = ["
|
| 87 |
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
|
| 88 |
|
| 89 |
data_component = gr.components.Dataframe(
|
|
@@ -109,15 +114,12 @@ with block:
|
|
| 109 |
|
| 110 |
# Add the visualizer components (Dropdown, Checkbox, Button, Image)
|
| 111 |
with gr.Row():
|
| 112 |
-
method_names = pd.read_csv(CSV_RESULT_PATH)['Method'].unique().tolist()
|
| 113 |
-
metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
|
| 114 |
-
metric_names.remove('Method') # Remove Method from the metric options
|
| 115 |
|
| 116 |
# Visualizer Controls: Smaller and underneath each other
|
| 117 |
with gr.Column(scale=1):
|
| 118 |
-
method_selector = gr.CheckboxGroup(choices=method_names, label="Select
|
| 119 |
-
x_metric_selector = gr.Dropdown(choices=
|
| 120 |
-
y_metric_selector = gr.Dropdown(choices=
|
| 121 |
plot_button = gr.Button("Plot")
|
| 122 |
|
| 123 |
# Larger plot display
|
|
|
|
| 15 |
|
| 16 |
def get_baseline_df(selected_methods, selected_metrics):
|
| 17 |
df = pd.read_csv(CSV_RESULT_PATH)
|
| 18 |
+
present_columns = ["method_name"] + selected_metrics
|
| 19 |
+
df = df[df['method_name'].isin(selected_methods)][present_columns]
|
| 20 |
return df
|
| 21 |
|
| 22 |
# Function to create the plot
|
| 23 |
def create_plot(methods_selected, x_metric, y_metric):
|
| 24 |
df = pd.read_csv(CSV_RESULT_PATH)
|
| 25 |
+
filtered_df = df[df['method_name'].isin(methods_selected)]
|
| 26 |
|
| 27 |
# Create a larger plot
|
| 28 |
plt.figure(figsize=(10, 8)) # Increase the figure size
|
| 29 |
for method in methods_selected:
|
| 30 |
+
method_data = filtered_df[filtered_df['method_name'] == method]
|
| 31 |
plt.plot(method_data[x_metric], method_data[y_metric], label=method, marker='o')
|
| 32 |
|
| 33 |
plt.xlabel(x_metric)
|
|
|
|
| 70 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 71 |
# table jmmmu bench
|
| 72 |
with gr.TabItem("🏅 PROBE Benchmark", elem_id="probe-benchmark-tab-table", id=1):
|
| 73 |
+
|
| 74 |
+
method_names = pd.read_csv(CSV_RESULT_PATH)['method_name'].unique().tolist()
|
| 75 |
+
metric_names = pd.read_csv(CSV_RESULT_PATH).columns.tolist()
|
| 76 |
+
metrics_with_method = metric_names
|
| 77 |
+
metric_names.remove('method_name') # Remove method_name from the metric options
|
| 78 |
+
|
| 79 |
# Leaderboard section with method and metric selectors
|
| 80 |
with gr.Row():
|
| 81 |
# Add method and metric selectors for leaderboard
|
| 82 |
leaderboard_method_selector = gr.CheckboxGroup(
|
| 83 |
+
choices=method_names, label="Select method_names for Leaderboard", value=method_names, interactive=True
|
| 84 |
)
|
| 85 |
leaderboard_metric_selector = gr.CheckboxGroup(
|
| 86 |
choices=metric_names, label="Select Metrics for Leaderboard", value=metric_names, interactive=True
|
|
|
|
| 88 |
|
| 89 |
# Display the filtered leaderboard
|
| 90 |
baseline_value = get_baseline_df(method_names, metric_names)
|
| 91 |
+
baseline_header = ["method_name"] + metric_names
|
| 92 |
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
|
| 93 |
|
| 94 |
data_component = gr.components.Dataframe(
|
|
|
|
| 114 |
|
| 115 |
# Add the visualizer components (Dropdown, Checkbox, Button, Image)
|
| 116 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
# Visualizer Controls: Smaller and underneath each other
|
| 119 |
with gr.Column(scale=1):
|
| 120 |
+
method_selector = gr.CheckboxGroup(choices=method_names, label="Select method_names", interactive=True, value=method_names)
|
| 121 |
+
x_metric_selector = gr.Dropdown(choices=metrics_with_method, label="Select X-axis Metric", interactive=True)
|
| 122 |
+
y_metric_selector = gr.Dropdown(choices=metrics_with_method, label="Select Y-axis Metric", interactive=True)
|
| 123 |
plot_button = gr.Button("Plot")
|
| 124 |
|
| 125 |
# Larger plot display
|