Spaces:
Running
Running
Update src/saving_utils.py
Browse files- src/saving_utils.py +83 -60
src/saving_utils.py
CHANGED
|
@@ -76,26 +76,11 @@ def upload_to_hub(benchmark_types, repo_id="mgyigit/probe-data", repo_type="spac
|
|
| 76 |
return 0
|
| 77 |
|
| 78 |
|
| 79 |
-
def save_csv_locally(dataframe, file_name, save_dir="/tmp"):
|
| 80 |
-
# Ensure the save directory exists
|
| 81 |
-
os.makedirs(save_dir, exist_ok=True)
|
| 82 |
-
|
| 83 |
-
# Construct the full file path
|
| 84 |
-
file_path = os.path.join(save_dir, file_name)
|
| 85 |
-
|
| 86 |
-
# Save the DataFrame as a CSV
|
| 87 |
-
dataframe.to_csv(file_path, index=False)
|
| 88 |
-
print(f"Saved {file_name} to {file_path}")
|
| 89 |
-
|
| 90 |
-
return file_path
|
| 91 |
-
|
| 92 |
-
|
| 93 |
def save_similarity_output(
|
| 94 |
output_dict,
|
| 95 |
method_name,
|
| 96 |
leaderboard_path="/tmp/leaderboard_results.csv",
|
| 97 |
similarity_path="/tmp/similarity_results.csv",
|
| 98 |
-
repo_id="mgyigit/probe-data",
|
| 99 |
):
|
| 100 |
# Load or initialize the DataFrames
|
| 101 |
if os.path.exists(leaderboard_path):
|
|
@@ -155,26 +140,42 @@ def save_similarity_output(
|
|
| 155 |
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
| 156 |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
|
| 161 |
return 0
|
| 162 |
|
| 163 |
-
def save_function_output(model_output, method_name, func_results_path="/home/user/app/src/data/function_results.csv", leaderboard_path="/home/user/app/src/data/leaderboard_results.csv"):
|
| 164 |
-
# Load or initialize the DataFrames
|
| 165 |
-
if os.path.exists(func_results_path):
|
| 166 |
-
func_results_df = pd.read_csv(func_results_path)
|
| 167 |
-
else:
|
| 168 |
-
func_results_df = pd.DataFrame(columns=['Method'])
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
if os.path.exists(leaderboard_path):
|
| 171 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
| 172 |
else:
|
| 173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
# Ensure the method_name row exists in function results
|
| 176 |
if method_name not in func_results_df['Method'].values:
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
# Storage for averaging in leaderboard results
|
| 180 |
metrics_sum = {
|
|
@@ -193,10 +194,10 @@ def save_function_output(model_output, method_name, func_results_path="/home/use
|
|
| 193 |
aspect, dataset1, dataset2 = key.split('_')
|
| 194 |
|
| 195 |
# Save each metric to function_results under its respective column
|
| 196 |
-
func_results_df.
|
| 197 |
-
func_results_df.
|
| 198 |
-
func_results_df.
|
| 199 |
-
func_results_df.
|
| 200 |
|
| 201 |
# Add values for leaderboard averaging
|
| 202 |
metrics_sum['accuracy'][aspect].append(accuracy)
|
|
@@ -209,7 +210,7 @@ def save_function_output(model_output, method_name, func_results_path="/home/use
|
|
| 209 |
for aspect in ['BP', 'CC', 'MF']:
|
| 210 |
if metrics_sum[metric][aspect]:
|
| 211 |
aspect_average = sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
|
| 212 |
-
leaderboard_df.
|
| 213 |
|
| 214 |
# Calculate overall average if each aspect has entries
|
| 215 |
if all(metrics_sum[metric][aspect] for aspect in ['BP', 'CC', 'MF']):
|
|
@@ -217,7 +218,7 @@ def save_function_output(model_output, method_name, func_results_path="/home/use
|
|
| 217 |
sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
|
| 218 |
for aspect in ['BP', 'CC', 'MF']
|
| 219 |
) / 3
|
| 220 |
-
leaderboard_df.
|
| 221 |
|
| 222 |
# Save updated DataFrames to CSV
|
| 223 |
func_results_df.to_csv(func_results_path, index=False)
|
|
@@ -225,69 +226,91 @@ def save_function_output(model_output, method_name, func_results_path="/home/use
|
|
| 225 |
|
| 226 |
return 0
|
| 227 |
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
# Load or initialize the DataFrames
|
| 230 |
if os.path.exists(leaderboard_path):
|
| 231 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
| 232 |
else:
|
| 233 |
-
|
|
|
|
| 234 |
|
| 235 |
if os.path.exists(family_results_path):
|
| 236 |
family_results_df = pd.read_csv(family_results_path)
|
| 237 |
else:
|
| 238 |
-
|
|
|
|
| 239 |
|
| 240 |
-
# Ensure the method_name row exists in the leaderboard results
|
| 241 |
-
if method_name not in leaderboard_df['Method'].values:
|
| 242 |
-
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
| 243 |
-
|
| 244 |
-
# Ensure the method_name row exists in family results
|
| 245 |
if method_name not in family_results_df['Method'].values:
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
# Iterate through the datasets and metrics
|
| 249 |
for dataset, metrics in model_output.items():
|
| 250 |
for metric, values in metrics.items():
|
| 251 |
# Calculate the average for each metric in leaderboard results
|
| 252 |
avg_value = sum(values) / len(values) if values else None
|
| 253 |
-
leaderboard_df.
|
| 254 |
|
| 255 |
# Save each fold result for family results
|
| 256 |
for i, value in enumerate(values):
|
| 257 |
-
family_results_df.
|
| 258 |
|
| 259 |
# Save updated DataFrames to CSV
|
| 260 |
leaderboard_df.to_csv(leaderboard_path, index=False)
|
| 261 |
family_results_df.to_csv(family_results_path, index=False)
|
| 262 |
|
| 263 |
-
return
|
|
|
|
| 264 |
|
| 265 |
-
def save_affinity_output(
|
| 266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
if os.path.exists(leaderboard_path):
|
| 268 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
| 269 |
else:
|
| 270 |
-
|
|
|
|
| 271 |
|
| 272 |
if os.path.exists(affinity_results_path):
|
| 273 |
affinity_results_df = pd.read_csv(affinity_results_path)
|
| 274 |
else:
|
| 275 |
-
|
|
|
|
| 276 |
|
| 277 |
-
# Ensure the method_name row exists in the leaderboard results
|
| 278 |
-
if method_name not in leaderboard_df['Method'].values:
|
| 279 |
-
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
| 280 |
-
|
| 281 |
-
# Ensure the method_name row exists in affinity results
|
| 282 |
if method_name not in affinity_results_df['Method'].values:
|
| 283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
|
| 285 |
# Process 'summary' section for leaderboard results
|
| 286 |
summary = model_output.get('summary', {})
|
| 287 |
if summary:
|
| 288 |
-
leaderboard_df.
|
| 289 |
-
leaderboard_df.
|
| 290 |
-
leaderboard_df.
|
| 291 |
|
| 292 |
# Process 'detail' section for affinity results
|
| 293 |
detail = model_output.get('detail', {})
|
|
@@ -295,11 +318,11 @@ def save_affinity_output(model_output, method_name, leaderboard_path="/home/user
|
|
| 295 |
# Save each 10-fold cross-validation result for mse, mae, and corr
|
| 296 |
for i in range(10):
|
| 297 |
if 'val_mse_errors' in detail:
|
| 298 |
-
affinity_results_df.
|
| 299 |
if 'val_mae_errors' in detail:
|
| 300 |
-
affinity_results_df.
|
| 301 |
if 'validation_corrs' in detail:
|
| 302 |
-
affinity_results_df.
|
| 303 |
|
| 304 |
# Save updated DataFrames to CSV
|
| 305 |
leaderboard_df.to_csv(leaderboard_path, index=False)
|
|
|
|
| 76 |
return 0
|
| 77 |
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
def save_similarity_output(
|
| 80 |
output_dict,
|
| 81 |
method_name,
|
| 82 |
leaderboard_path="/tmp/leaderboard_results.csv",
|
| 83 |
similarity_path="/tmp/similarity_results.csv",
|
|
|
|
| 84 |
):
|
| 85 |
# Load or initialize the DataFrames
|
| 86 |
if os.path.exists(leaderboard_path):
|
|
|
|
| 140 |
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
| 141 |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
| 142 |
|
| 143 |
+
leaderboard_df.to_csv(leaderboard_path, index=False)
|
| 144 |
+
similarity_df.to_csv(similarity_path, index=False)
|
| 145 |
|
| 146 |
return 0
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
| 149 |
+
def save_function_output(
|
| 150 |
+
model_output,
|
| 151 |
+
method_name,
|
| 152 |
+
func_results_path="/tmp/function_results.csv",
|
| 153 |
+
leaderboard_path="/tmp/leaderboard_results.csv"
|
| 154 |
+
):
|
| 155 |
+
# Load or initialize the DataFrames
|
| 156 |
if os.path.exists(leaderboard_path):
|
| 157 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
| 158 |
else:
|
| 159 |
+
print("Leaderboard file not found!")
|
| 160 |
+
return -1
|
| 161 |
+
|
| 162 |
+
if os.path.exists(func_results_path):
|
| 163 |
+
func_results_df = pd.read_csv(func_results_path)
|
| 164 |
+
else:
|
| 165 |
+
print("Function file not found!")
|
| 166 |
+
return -1
|
| 167 |
|
|
|
|
| 168 |
if method_name not in func_results_df['Method'].values:
|
| 169 |
+
# Create a new row for the method with default values
|
| 170 |
+
new_row = {col: None for col in func_results_df.columns}
|
| 171 |
+
new_row['Method'] = method_name
|
| 172 |
+
func_results_df = pd.concat([func_results_df, pd.DataFrame([new_row])], ignore_index=True)
|
| 173 |
+
|
| 174 |
+
if method_name not in leaderboard_df['Method'].values:
|
| 175 |
+
new_row = {col: None for col in leaderboard_df.columns}
|
| 176 |
+
new_row['Method'] = method_name
|
| 177 |
+
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)
|
| 178 |
+
|
| 179 |
|
| 180 |
# Storage for averaging in leaderboard results
|
| 181 |
metrics_sum = {
|
|
|
|
| 194 |
aspect, dataset1, dataset2 = key.split('_')
|
| 195 |
|
| 196 |
# Save each metric to function_results under its respective column
|
| 197 |
+
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_accuracy"] = accuracy
|
| 198 |
+
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_F1"] = f1
|
| 199 |
+
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_precision"] = precision
|
| 200 |
+
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_recall"] = recall
|
| 201 |
|
| 202 |
# Add values for leaderboard averaging
|
| 203 |
metrics_sum['accuracy'][aspect].append(accuracy)
|
|
|
|
| 210 |
for aspect in ['BP', 'CC', 'MF']:
|
| 211 |
if metrics_sum[metric][aspect]:
|
| 212 |
aspect_average = sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
|
| 213 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"func_{aspect}_{metric}"] = aspect_average
|
| 214 |
|
| 215 |
# Calculate overall average if each aspect has entries
|
| 216 |
if all(metrics_sum[metric][aspect] for aspect in ['BP', 'CC', 'MF']):
|
|
|
|
| 218 |
sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
|
| 219 |
for aspect in ['BP', 'CC', 'MF']
|
| 220 |
) / 3
|
| 221 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"func_Ave_{metric}"] = overall_average
|
| 222 |
|
| 223 |
# Save updated DataFrames to CSV
|
| 224 |
func_results_df.to_csv(func_results_path, index=False)
|
|
|
|
| 226 |
|
| 227 |
return 0
|
| 228 |
|
| 229 |
+
|
| 230 |
+
def save_family_output(
|
| 231 |
+
model_output,
|
| 232 |
+
method_name,
|
| 233 |
+
leaderboard_path="/tmp/leaderboard_results.csv",
|
| 234 |
+
family_results_path="/tmp/family_results.csv"
|
| 235 |
+
):
|
| 236 |
# Load or initialize the DataFrames
|
| 237 |
if os.path.exists(leaderboard_path):
|
| 238 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
| 239 |
else:
|
| 240 |
+
print("Leaderboard file not found!")
|
| 241 |
+
return -1
|
| 242 |
|
| 243 |
if os.path.exists(family_results_path):
|
| 244 |
family_results_df = pd.read_csv(family_results_path)
|
| 245 |
else:
|
| 246 |
+
print("Family file not found!")
|
| 247 |
+
return -1
|
| 248 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 249 |
if method_name not in family_results_df['Method'].values:
|
| 250 |
+
# Create a new row for the method with default values
|
| 251 |
+
new_row = {col: None for col in family_results_df.columns}
|
| 252 |
+
new_row['Method'] = method_name
|
| 253 |
+
family_results_df = pd.concat([family_results_df, pd.DataFrame([new_row])], ignore_index=True)
|
| 254 |
+
|
| 255 |
+
if method_name not in leaderboard_df['Method'].values:
|
| 256 |
+
new_row = {col: None for col in leaderboard_df.columns}
|
| 257 |
+
new_row['Method'] = method_name
|
| 258 |
+
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)
|
| 259 |
|
| 260 |
# Iterate through the datasets and metrics
|
| 261 |
for dataset, metrics in model_output.items():
|
| 262 |
for metric, values in metrics.items():
|
| 263 |
# Calculate the average for each metric in leaderboard results
|
| 264 |
avg_value = sum(values) / len(values) if values else None
|
| 265 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"fam_{dataset}_{metric}_ave"] = avg_value
|
| 266 |
|
| 267 |
# Save each fold result for family results
|
| 268 |
for i, value in enumerate(values):
|
| 269 |
+
family_results_df.loc[family_results_df['Method'] == method_name, f"{dataset}_{metric}_{i}"] = value
|
| 270 |
|
| 271 |
# Save updated DataFrames to CSV
|
| 272 |
leaderboard_df.to_csv(leaderboard_path, index=False)
|
| 273 |
family_results_df.to_csv(family_results_path, index=False)
|
| 274 |
|
| 275 |
+
return 0
|
| 276 |
+
|
| 277 |
|
| 278 |
+
def save_affinity_output(
|
| 279 |
+
model_output,
|
| 280 |
+
method_name,
|
| 281 |
+
leaderboard_path="/tmp/leaderboard_results.csv",
|
| 282 |
+
affinity_results_path="/tmp/affinity_results.csv"
|
| 283 |
+
):
|
| 284 |
+
# Load or initialize the DataFrames
|
| 285 |
if os.path.exists(leaderboard_path):
|
| 286 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
| 287 |
else:
|
| 288 |
+
print("Leaderboard file not found!")
|
| 289 |
+
return -1
|
| 290 |
|
| 291 |
if os.path.exists(affinity_results_path):
|
| 292 |
affinity_results_df = pd.read_csv(affinity_results_path)
|
| 293 |
else:
|
| 294 |
+
print("Affinity file not found!")
|
| 295 |
+
return -1
|
| 296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
if method_name not in affinity_results_df['Method'].values:
|
| 298 |
+
# Create a new row for the method with default values
|
| 299 |
+
new_row = {col: None for col in affinity_results_df.columns}
|
| 300 |
+
new_row['Method'] = method_name
|
| 301 |
+
affinity_results_df = pd.concat([affinity_results_df, pd.DataFrame([new_row])], ignore_index=True)
|
| 302 |
+
|
| 303 |
+
if method_name not in leaderboard_df['Method'].values:
|
| 304 |
+
new_row = {col: None for col in leaderboard_df.columns}
|
| 305 |
+
new_row['Method'] = method_name
|
| 306 |
+
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)
|
| 307 |
|
| 308 |
# Process 'summary' section for leaderboard results
|
| 309 |
summary = model_output.get('summary', {})
|
| 310 |
if summary:
|
| 311 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_mse_ave'] = summary.get('val_mse_error')
|
| 312 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_mae_ave'] = summary.get('val_mae_error')
|
| 313 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_corr_ave'] = summary.get('validation_corr')
|
| 314 |
|
| 315 |
# Process 'detail' section for affinity results
|
| 316 |
detail = model_output.get('detail', {})
|
|
|
|
| 318 |
# Save each 10-fold cross-validation result for mse, mae, and corr
|
| 319 |
for i in range(10):
|
| 320 |
if 'val_mse_errors' in detail:
|
| 321 |
+
affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"mse_{i}"] = detail['val_mse_errors'][i]
|
| 322 |
if 'val_mae_errors' in detail:
|
| 323 |
+
affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"mae_{i}"] = detail['val_mae_errors'][i]
|
| 324 |
if 'validation_corrs' in detail:
|
| 325 |
+
affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"corr_{i}"] = detail['validation_corrs'][i]
|
| 326 |
|
| 327 |
# Save updated DataFrames to CSV
|
| 328 |
leaderboard_df.to_csv(leaderboard_path, index=False)
|