Spaces:
Running
Running
Update src/bin/semantic_similarity_infer.py
Browse files
src/bin/semantic_similarity_infer.py
CHANGED
|
@@ -1,32 +1,21 @@
|
|
| 1 |
#!/usr/bin/env python
|
| 2 |
# coding: utf-8
|
| 3 |
import os
|
| 4 |
-
script_dir = os.path.dirname(os.path.abspath(__file__))
|
| 5 |
-
|
| 6 |
import pandas as pd
|
| 7 |
import numpy as np
|
| 8 |
-
import gzip
|
| 9 |
import itertools
|
| 10 |
import multiprocessing
|
| 11 |
-
import csv
|
| 12 |
-
import pickle
|
| 13 |
-
import random
|
| 14 |
-
from sklearn.metrics.pairwise import cosine_similarity as cosine
|
| 15 |
-
from sklearn.metrics import mean_squared_error as mse
|
| 16 |
-
from tqdm import tqdm, tqdm_notebook
|
| 17 |
-
from multiprocessing import Manager, Pool
|
| 18 |
from scipy.spatial.distance import cdist
|
| 19 |
from numpy.linalg import norm
|
| 20 |
-
from scipy.stats import spearmanr
|
| 21 |
-
from
|
| 22 |
|
| 23 |
-
manager = Manager()
|
| 24 |
similarity_list = manager.list()
|
| 25 |
proteinListNew = manager.list()
|
| 26 |
-
|
| 27 |
representation_dataframe = ""
|
| 28 |
-
protein_names =
|
| 29 |
-
# define similarity_list and proteinList as global variables
|
| 30 |
representation_name = ""
|
| 31 |
similarity_tasks = ""
|
| 32 |
detailed_output = False
|
|
@@ -34,130 +23,94 @@ detailed_output = False
|
|
| 34 |
def parallelSimilarity(paramList):
|
| 35 |
protein_embedding_dataframe = representation_dataframe
|
| 36 |
i = paramList[0]
|
| 37 |
-
j = paramList[1]
|
| 38 |
-
|
| 39 |
-
if j>i:
|
| 40 |
protein1 = proteinListNew[i]
|
| 41 |
protein2 = proteinListNew[j]
|
| 42 |
if protein1 in protein_names and protein2 in protein_names:
|
| 43 |
prot1vec = np.asarray(protein_embedding_dataframe.query("Entry == @protein1")['Vector'].item())
|
| 44 |
prot2vec = np.asarray(protein_embedding_dataframe.query("Entry == @protein2")['Vector'].item())
|
| 45 |
-
|
| 46 |
-
|
| 47 |
manhattanDist = cdist(prot1vec.reshape(1,-1), prot2vec.reshape(1,-1), 'cityblock')
|
| 48 |
-
manhattanDistNorm = manhattanDist/(norm(prot1vec,1) + norm(prot2vec,1))
|
| 49 |
-
manhattanSim = 1-manhattanDistNorm.item()
|
| 50 |
-
|
|
|
|
| 51 |
manhattanSim = 1.0
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
#print(norm(prot2vec,1))
|
| 56 |
-
euclideanDist = cdist(prot1vec.reshape(1,-1), prot2vec.reshape(1,-1), 'euclidean')
|
| 57 |
-
euclideanDistNorm = euclideanDist/(norm(prot1vec,2) + norm(prot2vec,2))
|
| 58 |
-
euclidianSim = 1-euclideanDistNorm.item()
|
| 59 |
-
if (norm(prot1vec,1)==0 and norm(prot2vec,1) == 0):
|
| 60 |
-
euclidianSim = 1.0
|
| 61 |
-
real = paramList[3]
|
| 62 |
-
# To ensure real and calculated values appended to same postion they saved similtanously and then decoupled
|
| 63 |
-
similarity_list.append((real,cos,manhattanSim ,euclidianSim))
|
| 64 |
return similarity_list
|
| 65 |
|
| 66 |
-
def calculateCorrelationforOntology(aspect,matrix_type):
|
| 67 |
-
print("\n\nSemantic similarity correlation calculation for aspect: " + aspect + " using matrix/dataset: " + matrix_type + " ...\n")
|
| 68 |
-
#Clear lists before each aspect
|
| 69 |
similarity_list[:] = []
|
| 70 |
proteinListNew[:] = []
|
| 71 |
|
| 72 |
-
similarityMatrixNameDict = {
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
|
|
|
| 77 |
|
| 78 |
similarityMatrixFileName = similarityMatrixNameDict[matrix_type]
|
| 79 |
-
|
| 80 |
human_proteinSimilarityMatrix = pd.read_csv(similarityMatrixFileName)
|
| 81 |
-
human_proteinSimilarityMatrix.set_index(human_proteinSimilarityMatrix.columns, inplace
|
| 82 |
proteinList = human_proteinSimilarityMatrix.columns
|
| 83 |
|
| 84 |
-
#proteinListNew is referanced using Manager
|
| 85 |
for prot in proteinList:
|
| 86 |
proteinListNew.append(prot)
|
|
|
|
| 87 |
if matrix_type == "Sparse":
|
| 88 |
-
|
| 89 |
-
sparsified_path = os.path.join(script_dir, "../data/auxilary_input/SparsifiedSimilarityCoordinates_"+aspect+"_for_highest_500.npy")
|
| 90 |
sparsified_similarity_coordinates = np.load(sparsified_path)
|
| 91 |
protParamList = sparsified_similarity_coordinates
|
| 92 |
-
else:
|
| 93 |
i = range(len(proteinList))
|
| 94 |
j = range(len(proteinList))
|
| 95 |
-
protParamList = list(itertools.product(i,j))
|
|
|
|
| 96 |
protParamListNew = []
|
| 97 |
-
# Prepare parameters for parallel processing these parameters will be
|
| 98 |
-
# used concurrently by different processes
|
| 99 |
for tup in tqdm(protParamList):
|
| 100 |
i = tup[0]
|
| 101 |
j = tup[1]
|
| 102 |
-
|
| 103 |
if matrix_type == "Sparse":
|
| 104 |
protein1 = proteinListNew[i]
|
| 105 |
protein2 = proteinListNew[j]
|
| 106 |
-
real = human_proteinSimilarityMatrix.loc[protein1,protein2]
|
| 107 |
-
tupNew = (tup[0],tup[1],
|
| 108 |
protParamListNew.append(tupNew)
|
| 109 |
else:
|
| 110 |
if j > i:
|
| 111 |
protein1 = proteinListNew[i]
|
| 112 |
protein2 = proteinListNew[j]
|
| 113 |
-
real = human_proteinSimilarityMatrix.loc[protein1,protein2]
|
| 114 |
-
tupNew = (tup[0],tup[1],
|
| 115 |
protParamListNew.append(tupNew)
|
| 116 |
|
| 117 |
-
|
| 118 |
-
pool = Pool()
|
| 119 |
similarity_listRet = []
|
| 120 |
-
|
| 121 |
-
for similarity_listRet in tqdm(pool.imap_unordered(parallelSimilarity,protParamListNew), total=total_task_num , position=0, leave=True ):
|
| 122 |
pass
|
| 123 |
-
#time.sleep(0.1)
|
| 124 |
pool.close()
|
| 125 |
pool.join()
|
| 126 |
|
| 127 |
real_distance_list = [value[0] for value in similarity_listRet]
|
| 128 |
-
|
| 129 |
-
manhattan_distance_list = [value[2] for value in similarity_listRet]
|
| 130 |
-
euclidian_distance_list = [value[3] for value in similarity_listRet]
|
| 131 |
|
| 132 |
-
distance_lists = [real_distance_list,cosine_distance_list,manhattan_distance_list,euclidian_distance_list]
|
| 133 |
-
if detailed_output:
|
| 134 |
-
report_detailed_distance_scores(representation_name,matrix_type,aspect,distance_lists)
|
| 135 |
-
|
| 136 |
-
cosineCorr = spearmanr(real_distance_list, cosine_distance_list)
|
| 137 |
manhattanCorr = spearmanr(real_distance_list, manhattan_distance_list)
|
| 138 |
-
euclidianCorr = spearmanr(real_distance_list, euclidian_distance_list)
|
| 139 |
-
|
| 140 |
-
#print("Cosine Correlation for "+aspect+" is " + str(cosineCorr))
|
| 141 |
-
#print("Manhattan Correlation for "+aspect+" is " + str(manhattanCorr))
|
| 142 |
-
#print("Euclidian Correlation for "+aspect+" is " + str(euclidianCorr))
|
| 143 |
-
|
| 144 |
-
return (cosineCorr,manhattanCorr,euclidianCorr)
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
pickle.dump(distance_lists, f)
|
| 150 |
|
| 151 |
def calculate_all_correlations():
|
|
|
|
| 152 |
for similarity_matrix_type in similarity_tasks:
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
buffer = "" + aspect + ","+ str(round(corr[0][0],5))+ ","+ str(round(corr[0][1],5))+ ","+ str(round(corr[1][0],5))\
|
| 160 |
-
+ ","+ str(round(corr[1][1],5))+ ","+ str(round(corr[2][0],5))+ ","+str(round(corr[2][1],5))+"\n"
|
| 161 |
-
f = open(saveFileName,'a')
|
| 162 |
-
f.write(buffer)
|
| 163 |
-
f.close()
|
|
|
|
| 1 |
#!/usr/bin/env python
|
| 2 |
# coding: utf-8
|
| 3 |
import os
|
|
|
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
import numpy as np
|
|
|
|
| 6 |
import itertools
|
| 7 |
import multiprocessing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
from scipy.spatial.distance import cdist
|
| 9 |
from numpy.linalg import norm
|
| 10 |
+
from scipy.stats import spearmanr
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
|
| 13 |
+
manager = multiprocessing.Manager()
|
| 14 |
similarity_list = manager.list()
|
| 15 |
proteinListNew = manager.list()
|
| 16 |
+
|
| 17 |
representation_dataframe = ""
|
| 18 |
+
protein_names = ""
|
|
|
|
| 19 |
representation_name = ""
|
| 20 |
similarity_tasks = ""
|
| 21 |
detailed_output = False
|
|
|
|
| 23 |
def parallelSimilarity(paramList):
|
| 24 |
protein_embedding_dataframe = representation_dataframe
|
| 25 |
i = paramList[0]
|
| 26 |
+
j = paramList[1]
|
| 27 |
+
if j > i:
|
|
|
|
| 28 |
protein1 = proteinListNew[i]
|
| 29 |
protein2 = proteinListNew[j]
|
| 30 |
if protein1 in protein_names and protein2 in protein_names:
|
| 31 |
prot1vec = np.asarray(protein_embedding_dataframe.query("Entry == @protein1")['Vector'].item())
|
| 32 |
prot2vec = np.asarray(protein_embedding_dataframe.query("Entry == @protein2")['Vector'].item())
|
| 33 |
+
|
| 34 |
+
# Calculate Manhattan Distance and normalize
|
| 35 |
manhattanDist = cdist(prot1vec.reshape(1,-1), prot2vec.reshape(1,-1), 'cityblock')
|
| 36 |
+
manhattanDistNorm = manhattanDist / (norm(prot1vec,1) + norm(prot2vec,1))
|
| 37 |
+
manhattanSim = 1 - manhattanDistNorm.item()
|
| 38 |
+
|
| 39 |
+
if norm(prot1vec, 1) == 0 and norm(prot2vec, 1) == 0:
|
| 40 |
manhattanSim = 1.0
|
| 41 |
+
|
| 42 |
+
real = paramList[2]
|
| 43 |
+
similarity_list.append((real, manhattanSim))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
return similarity_list
|
| 45 |
|
| 46 |
+
def calculateCorrelationforOntology(aspect, matrix_type):
|
|
|
|
|
|
|
| 47 |
similarity_list[:] = []
|
| 48 |
proteinListNew[:] = []
|
| 49 |
|
| 50 |
+
similarityMatrixNameDict = {
|
| 51 |
+
"All": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix.csv"),
|
| 52 |
+
"500": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_500_proteins.csv"),
|
| 53 |
+
"Sparse": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_500_proteins.csv"),
|
| 54 |
+
"200": os.path.join(script_dir, "../data/preprocess/human_" + aspect + "_proteinSimilarityMatrix_for_highest_annotated_200_proteins.csv")
|
| 55 |
+
}
|
| 56 |
|
| 57 |
similarityMatrixFileName = similarityMatrixNameDict[matrix_type]
|
|
|
|
| 58 |
human_proteinSimilarityMatrix = pd.read_csv(similarityMatrixFileName)
|
| 59 |
+
human_proteinSimilarityMatrix.set_index(human_proteinSimilarityMatrix.columns, inplace=True)
|
| 60 |
proteinList = human_proteinSimilarityMatrix.columns
|
| 61 |
|
|
|
|
| 62 |
for prot in proteinList:
|
| 63 |
proteinListNew.append(prot)
|
| 64 |
+
|
| 65 |
if matrix_type == "Sparse":
|
| 66 |
+
sparsified_path = os.path.join(script_dir, "../data/auxilary_input/SparsifiedSimilarityCoordinates_" + aspect + "_for_highest_500.npy")
|
|
|
|
| 67 |
sparsified_similarity_coordinates = np.load(sparsified_path)
|
| 68 |
protParamList = sparsified_similarity_coordinates
|
| 69 |
+
else:
|
| 70 |
i = range(len(proteinList))
|
| 71 |
j = range(len(proteinList))
|
| 72 |
+
protParamList = list(itertools.product(i, j))
|
| 73 |
+
|
| 74 |
protParamListNew = []
|
|
|
|
|
|
|
| 75 |
for tup in tqdm(protParamList):
|
| 76 |
i = tup[0]
|
| 77 |
j = tup[1]
|
|
|
|
| 78 |
if matrix_type == "Sparse":
|
| 79 |
protein1 = proteinListNew[i]
|
| 80 |
protein2 = proteinListNew[j]
|
| 81 |
+
real = human_proteinSimilarityMatrix.loc[protein1, protein2]
|
| 82 |
+
tupNew = (tup[0],tup[1],real)
|
| 83 |
protParamListNew.append(tupNew)
|
| 84 |
else:
|
| 85 |
if j > i:
|
| 86 |
protein1 = proteinListNew[i]
|
| 87 |
protein2 = proteinListNew[j]
|
| 88 |
+
real = human_proteinSimilarityMatrix.loc[protein1, protein2]
|
| 89 |
+
tupNew = (tup[0],tup[1],real)
|
| 90 |
protParamListNew.append(tupNew)
|
| 91 |
|
| 92 |
+
pool = multiprocessing.Pool()
|
|
|
|
| 93 |
similarity_listRet = []
|
| 94 |
+
for similarity_listRet in tqdm(pool.imap_unordered(parallelSimilarity, protParamListNew), total=len(protParamListNew), position=0, leave=True):
|
|
|
|
| 95 |
pass
|
|
|
|
| 96 |
pool.close()
|
| 97 |
pool.join()
|
| 98 |
|
| 99 |
real_distance_list = [value[0] for value in similarity_listRet]
|
| 100 |
+
manhattan_distance_list = [value[1] for value in similarity_listRet]
|
|
|
|
|
|
|
| 101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
manhattanCorr = spearmanr(real_distance_list, manhattan_distance_list)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
+
return {
|
| 105 |
+
"correlation": manhattanCorr[0], "p_value": manhattanCorr[1]
|
| 106 |
+
}
|
|
|
|
| 107 |
|
| 108 |
def calculate_all_correlations():
|
| 109 |
+
results = {}
|
| 110 |
for similarity_matrix_type in similarity_tasks:
|
| 111 |
+
matrix_results = {}
|
| 112 |
+
for aspect in ["MF", "BP", "CC"]:
|
| 113 |
+
corr = calculateCorrelationforOntology(aspect, similarity_matrix_type)
|
| 114 |
+
matrix_results[aspect] = corr
|
| 115 |
+
results[similarity_matrix_type] = matrix_results
|
| 116 |
+
return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|