Spaces:
Running
Running
Update src/bin/binding_affinity_estimator.py
Browse files
src/bin/binding_affinity_estimator.py
CHANGED
|
@@ -47,42 +47,28 @@ def calc_validation_error(X_test, y_test, model):
|
|
| 47 |
def calc_metrics(X_train, y_train, X_test, y_test, model):
|
| 48 |
'''Fits the model and returns the metrics for in-sample and out-of-sample errors.'''
|
| 49 |
model.fit(X_train, y_train)
|
| 50 |
-
train_mse_error, train_mae_error, train_corr = calc_train_error(X_train, y_train, model)
|
| 51 |
val_mse_error, val_mae_error, val_corr = calc_validation_error(X_test, y_test, model)
|
| 52 |
-
return
|
| 53 |
|
| 54 |
def report_results(
|
| 55 |
-
train_mse_error_list,
|
| 56 |
validation_mse_error_list,
|
| 57 |
-
train_mae_error_list,
|
| 58 |
validation_mae_error_list,
|
| 59 |
-
train_corr_list,
|
| 60 |
validation_corr_list,
|
| 61 |
-
train_corr_pval_list,
|
| 62 |
validation_corr_pval_list,
|
| 63 |
):
|
| 64 |
result_summary = {
|
| 65 |
-
"train_mse_error": round(np.mean(train_mse_error_list) * 100, 4),
|
| 66 |
-
"train_mse_std": round(np.std(train_mse_error_list) * 100, 4),
|
| 67 |
"val_mse_error": round(np.mean(validation_mse_error_list) * 100, 4),
|
| 68 |
"val_mse_std": round(np.std(validation_mse_error_list) * 100, 4),
|
| 69 |
-
"train_mae_error": round(np.mean(train_mae_error_list) * 100, 4),
|
| 70 |
-
"train_mae_std": round(np.std(train_mae_error_list) * 100, 4),
|
| 71 |
"val_mae_error": round(np.mean(validation_mae_error_list) * 100, 4),
|
| 72 |
"val_mae_std": round(np.std(validation_mae_error_list) * 100, 4),
|
| 73 |
-
"train_corr": round(np.mean(train_corr_list), 4),
|
| 74 |
-
"train_corr_pval": round(np.mean(train_corr_pval_list), 4),
|
| 75 |
"validation_corr": round(np.mean(validation_corr_list), 4),
|
| 76 |
"validation_corr_pval": round(np.mean(validation_corr_pval_list), 4),
|
| 77 |
}
|
| 78 |
|
| 79 |
result_detail = {
|
| 80 |
-
"train_mse_errors": list(np.multiply(train_mse_error_list, 100)),
|
| 81 |
"val_mse_errors": list(np.multiply(validation_mse_error_list, 100)),
|
| 82 |
-
"train_mae_errors": list(np.multiply(train_mae_error_list, 100)),
|
| 83 |
"val_mae_errors": list(np.multiply(validation_mae_error_list, 100)),
|
| 84 |
-
"train_corrs": list(np.multiply(train_corr_list, 100)),
|
| 85 |
-
"train_corr_pvals": list(np.multiply(train_corr_pval_list, 100)),
|
| 86 |
"validation_corrs": list(np.multiply(validation_corr_list, 100)),
|
| 87 |
"validation_corr_pvals": list(np.multiply(validation_corr_pval_list, 100)),
|
| 88 |
}
|
|
@@ -123,35 +109,24 @@ def predictAffinityWithModel(regressor_model, multiplied_vectors_df):
|
|
| 123 |
|
| 124 |
# calculate errors
|
| 125 |
(
|
| 126 |
-
train_mse_error,
|
| 127 |
val_mse_error,
|
| 128 |
-
train_mae_error,
|
| 129 |
val_mae_error,
|
| 130 |
-
train_corr,
|
| 131 |
val_corr,
|
| 132 |
) = calc_metrics(X_train, y_train, X_val, y_val, reg)
|
| 133 |
|
| 134 |
# append to appropriate lists
|
| 135 |
-
train_mse_error_list.append(train_mse_error)
|
| 136 |
validation_mse_error_list.append(val_mse_error)
|
| 137 |
|
| 138 |
-
train_mae_error_list.append(train_mae_error)
|
| 139 |
validation_mae_error_list.append(val_mae_error)
|
| 140 |
|
| 141 |
-
train_corr_list.append(train_corr[0])
|
| 142 |
validation_corr_list.append(val_corr[0])
|
| 143 |
|
| 144 |
-
train_corr_pval_list.append(train_corr[1])
|
| 145 |
validation_corr_pval_list.append(val_corr[1])
|
| 146 |
|
| 147 |
return report_results(
|
| 148 |
-
train_mse_error_list,
|
| 149 |
validation_mse_error_list,
|
| 150 |
-
train_mae_error_list,
|
| 151 |
validation_mae_error_list,
|
| 152 |
-
train_corr_list,
|
| 153 |
validation_corr_list,
|
| 154 |
-
train_corr_pval_list,
|
| 155 |
validation_corr_pval_list,
|
| 156 |
)
|
| 157 |
|
|
|
|
| 47 |
def calc_metrics(X_train, y_train, X_test, y_test, model):
|
| 48 |
'''Fits the model and returns the metrics for in-sample and out-of-sample errors.'''
|
| 49 |
model.fit(X_train, y_train)
|
| 50 |
+
#train_mse_error, train_mae_error, train_corr = calc_train_error(X_train, y_train, model)
|
| 51 |
val_mse_error, val_mae_error, val_corr = calc_validation_error(X_test, y_test, model)
|
| 52 |
+
return val_mse_error, val_mae_error, val_corr
|
| 53 |
|
| 54 |
def report_results(
|
|
|
|
| 55 |
validation_mse_error_list,
|
|
|
|
| 56 |
validation_mae_error_list,
|
|
|
|
| 57 |
validation_corr_list,
|
|
|
|
| 58 |
validation_corr_pval_list,
|
| 59 |
):
|
| 60 |
result_summary = {
|
|
|
|
|
|
|
| 61 |
"val_mse_error": round(np.mean(validation_mse_error_list) * 100, 4),
|
| 62 |
"val_mse_std": round(np.std(validation_mse_error_list) * 100, 4),
|
|
|
|
|
|
|
| 63 |
"val_mae_error": round(np.mean(validation_mae_error_list) * 100, 4),
|
| 64 |
"val_mae_std": round(np.std(validation_mae_error_list) * 100, 4),
|
|
|
|
|
|
|
| 65 |
"validation_corr": round(np.mean(validation_corr_list), 4),
|
| 66 |
"validation_corr_pval": round(np.mean(validation_corr_pval_list), 4),
|
| 67 |
}
|
| 68 |
|
| 69 |
result_detail = {
|
|
|
|
| 70 |
"val_mse_errors": list(np.multiply(validation_mse_error_list, 100)),
|
|
|
|
| 71 |
"val_mae_errors": list(np.multiply(validation_mae_error_list, 100)),
|
|
|
|
|
|
|
| 72 |
"validation_corrs": list(np.multiply(validation_corr_list, 100)),
|
| 73 |
"validation_corr_pvals": list(np.multiply(validation_corr_pval_list, 100)),
|
| 74 |
}
|
|
|
|
| 109 |
|
| 110 |
# calculate errors
|
| 111 |
(
|
|
|
|
| 112 |
val_mse_error,
|
|
|
|
| 113 |
val_mae_error,
|
|
|
|
| 114 |
val_corr,
|
| 115 |
) = calc_metrics(X_train, y_train, X_val, y_val, reg)
|
| 116 |
|
| 117 |
# append to appropriate lists
|
|
|
|
| 118 |
validation_mse_error_list.append(val_mse_error)
|
| 119 |
|
|
|
|
| 120 |
validation_mae_error_list.append(val_mae_error)
|
| 121 |
|
|
|
|
| 122 |
validation_corr_list.append(val_corr[0])
|
| 123 |
|
|
|
|
| 124 |
validation_corr_pval_list.append(val_corr[1])
|
| 125 |
|
| 126 |
return report_results(
|
|
|
|
| 127 |
validation_mse_error_list,
|
|
|
|
| 128 |
validation_mae_error_list,
|
|
|
|
| 129 |
validation_corr_list,
|
|
|
|
| 130 |
validation_corr_pval_list,
|
| 131 |
)
|
| 132 |
|