Spaces:
Running
Running
Erva Ulusoy
commited on
Commit
·
24c5c6a
1
Parent(s):
4e751b2
initialize app
Browse files- ProtHGT_app.py +26 -0
- data/available_proteins.txt +0 -0
- run_prothgt_app.py +129 -0
ProtHGT_app.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import streamlit.components.v1 as components
|
| 3 |
+
import os
|
| 4 |
+
import time
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
from run_prothgt_app import *
|
| 8 |
+
|
| 9 |
+
def convert_df(df):
|
| 10 |
+
return df.to_csv(index=False).encode('utf-8')
|
| 11 |
+
|
| 12 |
+
with st.sidebar:
|
| 13 |
+
st.title("ProtHGT: Heterogeneous Graph Transformers for Automated Protein Function Prediction Using Knowledge Graphs and Language Models")
|
| 14 |
+
st.write("[]() [](https://github.com/HUBioDataLab/ProtHGT)")
|
| 15 |
+
|
| 16 |
+
# Add protein selection
|
| 17 |
+
# You'll need to replace this with your actual data loading
|
| 18 |
+
available_proteins = get_available_proteins() # Function to get list of proteins from your data
|
| 19 |
+
selected_protein = st.selectbox(
|
| 20 |
+
"Select or search for a protein (UniProt ID)",
|
| 21 |
+
options=available_proteins,
|
| 22 |
+
placeholder="Start typing to search...",
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
if selected_protein:
|
| 26 |
+
st.write(f"Selected protein: {selected_protein}")
|
data/available_proteins.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
run_prothgt_app.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from torch_geometric.transforms import ToUndirected
|
| 3 |
+
import torch
|
| 4 |
+
from torch.nn import Linear
|
| 5 |
+
from torch_geometric.nn import HGTConv, MLP
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
class ProtHGT(torch.nn.Module):
|
| 9 |
+
def __init__(self, data,hidden_channels, num_heads, num_layers, mlp_hidden_layers, mlp_dropout):
|
| 10 |
+
super().__init__()
|
| 11 |
+
|
| 12 |
+
self.lin_dict = torch.nn.ModuleDict({
|
| 13 |
+
node_type: Linear(-1, hidden_channels)
|
| 14 |
+
for node_type in data.node_types
|
| 15 |
+
})
|
| 16 |
+
|
| 17 |
+
self.convs = torch.nn.ModuleList()
|
| 18 |
+
for _ in range(num_layers):
|
| 19 |
+
conv = HGTConv(hidden_channels, hidden_channels, data.metadata(), num_heads, group='sum')
|
| 20 |
+
self.convs.append(conv)
|
| 21 |
+
|
| 22 |
+
# self.left_linear = Linear(hidden_channels, hidden_channels)
|
| 23 |
+
# self.right_linear = Linear(hidden_channels, hidden_channels)
|
| 24 |
+
# self.sqrt_hd = hidden_channels**1/2
|
| 25 |
+
|
| 26 |
+
# self.mlp =MLP([2*hidden_channels, 128, 1], dropout=0.5, norm=None)
|
| 27 |
+
self.mlp = MLP(mlp_hidden_layers , dropout=mlp_dropout, norm=None)
|
| 28 |
+
|
| 29 |
+
def generate_embeddings(self, x_dict, edge_index_dict):
|
| 30 |
+
# Generate updated embeddings through the GNN layers
|
| 31 |
+
x_dict = {
|
| 32 |
+
node_type: self.lin_dict[node_type](x).relu_()
|
| 33 |
+
for node_type, x in x_dict.items()
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
for conv in self.convs:
|
| 37 |
+
x_dict = conv(x_dict, edge_index_dict)
|
| 38 |
+
|
| 39 |
+
return x_dict
|
| 40 |
+
|
| 41 |
+
def forward(self, x_dict, edge_index_dict, tr_edge_label_index, target_type, test=False):
|
| 42 |
+
# Get updated embeddings
|
| 43 |
+
x_dict = self.generate_embeddings(x_dict, edge_index_dict)
|
| 44 |
+
|
| 45 |
+
# Make predictions
|
| 46 |
+
row, col = tr_edge_label_index
|
| 47 |
+
z = torch.cat([x_dict["Protein"][row], x_dict[target_type][col]], dim=-1)
|
| 48 |
+
|
| 49 |
+
return self.mlp(z).view(-1), x_dict
|
| 50 |
+
|
| 51 |
+
def _load_data(protein_id, go_category=None, heterodata_path=''):
|
| 52 |
+
heterodata = load_dataset(heterodata_path)
|
| 53 |
+
|
| 54 |
+
# Remove unnecessary edge types in one go
|
| 55 |
+
edge_types_to_remove = [
|
| 56 |
+
('Protein', 'protein_function', 'GO_term_F'),
|
| 57 |
+
('Protein', 'protein_function', 'GO_term_P'),
|
| 58 |
+
('Protein', 'protein_function', 'GO_term_C'),
|
| 59 |
+
('GO_term_F', 'rev_protein_function', 'Protein'),
|
| 60 |
+
('GO_term_P', 'rev_protein_function', 'Protein'),
|
| 61 |
+
('GO_term_C', 'rev_protein_function', 'Protein')
|
| 62 |
+
]
|
| 63 |
+
|
| 64 |
+
for edge_type in edge_types_to_remove:
|
| 65 |
+
if edge_type in heterodata:
|
| 66 |
+
del heterodata[edge_type]
|
| 67 |
+
|
| 68 |
+
# Remove reverse edges
|
| 69 |
+
heterodata = {k: v for k, v in heterodata.items() if not isinstance(k, tuple) or 'rev' not in k[1]}
|
| 70 |
+
|
| 71 |
+
protein_index = heterodata['Protein']['id_mapping'][protein_id]
|
| 72 |
+
|
| 73 |
+
# Create edge indices more efficiently
|
| 74 |
+
categories = [go_category] if go_category else ['GO_term_F', 'GO_term_P', 'GO_term_C']
|
| 75 |
+
|
| 76 |
+
for category in categories:
|
| 77 |
+
pairs = [(protein_index, i) for i in range(len(heterodata[category]))]
|
| 78 |
+
heterodata['Protein', 'protein_function', category] = {'edge_index': pairs}
|
| 79 |
+
|
| 80 |
+
return ToUndirected(merge=False)(heterodata)
|
| 81 |
+
|
| 82 |
+
def get_available_proteins(protein_list_file='data/available_proteins.txt'):
|
| 83 |
+
with open(protein_list_file, 'r') as file:
|
| 84 |
+
return [line.strip() for line in file.readlines()]
|
| 85 |
+
|
| 86 |
+
def _generate_predictions(heterodata, model_path, model_config, target_type):
|
| 87 |
+
|
| 88 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 89 |
+
model = ProtHGT(heterodata, model_config['hidden_channels'], model_config['num_heads'], model_config['num_layers'], model_config['mlp_hidden_layers'], model_config['mlp_dropout'])
|
| 90 |
+
print('Loading model from', model_path)
|
| 91 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 92 |
+
|
| 93 |
+
model.to(device)
|
| 94 |
+
model.eval()
|
| 95 |
+
heterodata.to(device)
|
| 96 |
+
|
| 97 |
+
with torch.no_grad():
|
| 98 |
+
predictions, _ = model(heterodata.x_dict, heterodata.edge_index_dict, heterodata[("Protein", "protein_function", target_type)].edge_label_index, target_type)
|
| 99 |
+
return predictions
|
| 100 |
+
|
| 101 |
+
def _create_prediction_df(predictions, heterodata, protein_id, go_category):
|
| 102 |
+
prediction_df = pd.DataFrame({
|
| 103 |
+
'Protein': protein_id,
|
| 104 |
+
'GO_category': go_category,
|
| 105 |
+
'GO_term': heterodata[go_category]['id_mapping'].keys(),
|
| 106 |
+
'Probability': predictions.tolist()
|
| 107 |
+
})
|
| 108 |
+
prediction_df.sort_values(by='Probability', ascending=False, inplace=True)
|
| 109 |
+
prediction_df.reset_index(drop=True, inplace=True)
|
| 110 |
+
return prediction_df
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def generate_prediction_df(protein_id, heterodata_path, model_path, model_config, go_category=None):
|
| 114 |
+
heterodata = _load_data(protein_id, go_category, heterodata_path)
|
| 115 |
+
|
| 116 |
+
if go_category:
|
| 117 |
+
predictions = _generate_predictions(heterodata, model_path, model_config, go_category)
|
| 118 |
+
prediction_df = _create_prediction_df(predictions, heterodata, protein_id, go_category)
|
| 119 |
+
return prediction_df
|
| 120 |
+
|
| 121 |
+
else:
|
| 122 |
+
all_predictions = []
|
| 123 |
+
for go_category in ['GO_term_F', 'GO_term_P', 'GO_term_C']:
|
| 124 |
+
predictions = _generate_predictions(heterodata, model_path, model_config, go_category)
|
| 125 |
+
category_df = _create_prediction_df(predictions, heterodata, protein_id, go_category)
|
| 126 |
+
all_predictions.append(category_df)
|
| 127 |
+
|
| 128 |
+
return pd.concat(all_predictions, ignore_index=True)
|
| 129 |
+
|