Spaces:
Sleeping
Sleeping
Erva Ulusoy
commited on
Commit
Β·
6dd3e8c
1
Parent(s):
6248f35
added User Guide page
Browse files- pages/User_Guide.py +65 -0
pages/User_Guide.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
st.sidebar.markdown('''
|
| 4 |
+
# Sections
|
| 5 |
+
- [How to use](#how-to-use)
|
| 6 |
+
''', unsafe_allow_html=True)
|
| 7 |
+
|
| 8 |
+
st.markdown('''
|
| 9 |
+
# ProtHGT User Guide
|
| 10 |
+
''')
|
| 11 |
+
|
| 12 |
+
import streamlit as st
|
| 13 |
+
|
| 14 |
+
st.markdown("""
|
| 15 |
+
ProtHGT is a web-based tool for **automated protein function prediction** using heterogeneous graph transformers and knowledge graphs. Follow the steps below to generate predictions for your proteins.
|
| 16 |
+
""")
|
| 17 |
+
|
| 18 |
+
st.subheader("1. Select Proteins")
|
| 19 |
+
st.markdown("""
|
| 20 |
+
In the **sidebar**, choose how to input your proteins:
|
| 21 |
+
- **Search Proteins**: Select or search UniProt IDs from the available dataset.
|
| 22 |
+
- **Upload a File**: Upload a text file (.txt) containing UniProt IDs (one per line, max 100).
|
| 23 |
+
""")
|
| 24 |
+
st.warning("β οΈ Only proteins included in our input knowledge graph can be processed. If your protein is missing, real-time retrieval from external sources is not yet supported.")
|
| 25 |
+
st.info("π₯ Selected proteins can be downloaded as a txt file.")
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
st.subheader("2. Choose Gene Ontology (GO) Category")
|
| 29 |
+
st.markdown("""
|
| 30 |
+
Select which **Gene Ontology (GO) sub-ontology** to use for function prediction:
|
| 31 |
+
- **Molecular Function (MF)** β Biochemical activity of the protein
|
| 32 |
+
- **Biological Process (BP)** β Biological roles and pathways
|
| 33 |
+
- **Cellular Component (CC)** β Location within the cell
|
| 34 |
+
- **All Categories** β Runs predictions for all three categories
|
| 35 |
+
""")
|
| 36 |
+
|
| 37 |
+
st.subheader("3. Generate Predictions")
|
| 38 |
+
st.markdown("""
|
| 39 |
+
Click **"Generate Predictions"** to start the analysis. The model will process the selected proteins and return predicted functional annotations.
|
| 40 |
+
|
| 41 |
+
π **Processing time**: A few minutes (depending on input size).
|
| 42 |
+
""")
|
| 43 |
+
|
| 44 |
+
st.subheader("4. View and Filter Results")
|
| 45 |
+
st.markdown("""
|
| 46 |
+
Once predictions are generated, use the filter options to refine the output:
|
| 47 |
+
- **Filter by Protein** (UniProt ID)
|
| 48 |
+
- **Filter by GO Category**
|
| 49 |
+
- **Set Probability Range** (Adjust prediction confidence thresholds)
|
| 50 |
+
|
| 51 |
+
Results are displayed in a sortable table, with **probabilities** indicating prediction confidence.
|
| 52 |
+
""")
|
| 53 |
+
|
| 54 |
+
st.info("π₯ Filtered predictions can be downloaded as a CSV file.")
|
| 55 |
+
|
| 56 |
+
st.subheader("5. Reset and Start Over")
|
| 57 |
+
st.markdown("""
|
| 58 |
+
To reset your selections and run new predictions, click **"Reset"** in the sidebar.
|
| 59 |
+
""")
|
| 60 |
+
|
| 61 |
+
st.subheader("π Running Locally?")
|
| 62 |
+
st.markdown("""
|
| 63 |
+
For **larger datasets** or **custom analyses**, you can run ProtHGT locally using our **GitHub repository**:
|
| 64 |
+
[π ProtHGT GitHub](https://github.com/HUBioDataLab/ProtHGT)
|
| 65 |
+
""")
|