Spaces:
Sleeping
Sleeping
Erva Ulusoy
commited on
Commit
·
8aa6c67
1
Parent(s):
673a3cf
updated data load function
Browse files- requirements.txt +2 -1
- run_prothgt_app.py +45 -26
requirements.txt
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
pandas
|
| 2 |
torch_geometric
|
| 3 |
-
torch
|
|
|
|
|
|
| 1 |
pandas
|
| 2 |
torch_geometric
|
| 3 |
+
torch
|
| 4 |
+
gdown
|
run_prothgt_app.py
CHANGED
|
@@ -5,6 +5,7 @@ import pandas as pd
|
|
| 5 |
import yaml
|
| 6 |
import os
|
| 7 |
from datasets import load_dataset
|
|
|
|
| 8 |
|
| 9 |
class ProtHGT(torch.nn.Module):
|
| 10 |
def __init__(self, data,hidden_channels, num_heads, num_layers, mlp_hidden_layers, mlp_dropout):
|
|
@@ -44,25 +45,8 @@ class ProtHGT(torch.nn.Module):
|
|
| 44 |
|
| 45 |
return self.mlp(z).view(-1), x_dict
|
| 46 |
|
| 47 |
-
def _load_data(protein_ids, go_category=None):
|
| 48 |
-
|
| 49 |
-
# heterodata = load_dataset('HUBioDataLab/ProtHGT-KG', data_files="prothgt-kg.pt")
|
| 50 |
-
heterodata = torch.load('data/prothgt-kg.pt')
|
| 51 |
-
print('Loading data...')
|
| 52 |
-
# Remove unnecessary edge types in one go
|
| 53 |
-
edge_types_to_remove = [
|
| 54 |
-
('Protein', 'protein_function', 'GO_term_F'),
|
| 55 |
-
('Protein', 'protein_function', 'GO_term_P'),
|
| 56 |
-
('Protein', 'protein_function', 'GO_term_C'),
|
| 57 |
-
('GO_term_F', 'rev_protein_function', 'Protein'),
|
| 58 |
-
('GO_term_P', 'rev_protein_function', 'Protein'),
|
| 59 |
-
('GO_term_C', 'rev_protein_function', 'Protein')
|
| 60 |
-
]
|
| 61 |
-
|
| 62 |
-
for edge_type in edge_types_to_remove:
|
| 63 |
-
if edge_type in heterodata.edge_index_dict:
|
| 64 |
-
del heterodata.edge_index_dict[edge_type]
|
| 65 |
-
|
| 66 |
# Get protein indices for all input proteins
|
| 67 |
protein_indices = [heterodata['Protein']['id_mapping'][pid] for pid in protein_ids]
|
| 68 |
|
|
@@ -136,20 +120,53 @@ def generate_prediction_df(protein_ids, model_paths, model_config_paths, go_cate
|
|
| 136 |
if isinstance(protein_ids, str):
|
| 137 |
protein_ids = [protein_ids]
|
| 138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
| 140 |
for go_cat, model_config_path, model_path in zip(go_category, model_config_paths, model_paths):
|
| 141 |
print(f'Generating predictions for {go_cat}...')
|
| 142 |
|
| 143 |
-
#
|
| 144 |
-
|
| 145 |
|
| 146 |
-
# Load model
|
| 147 |
with open(model_config_path, 'r') as file:
|
| 148 |
model_config = yaml.safe_load(file)
|
| 149 |
|
| 150 |
# Initialize model with configuration
|
| 151 |
model = ProtHGT(
|
| 152 |
-
|
| 153 |
hidden_channels=model_config['hidden_channels'][0],
|
| 154 |
num_heads=model_config['num_heads'],
|
| 155 |
num_layers=model_config['num_layers'],
|
|
@@ -162,16 +179,18 @@ def generate_prediction_df(protein_ids, model_paths, model_config_paths, go_cate
|
|
| 162 |
print(f'Loaded model weights from {model_path}')
|
| 163 |
|
| 164 |
# Generate predictions
|
| 165 |
-
predictions = _generate_predictions(
|
| 166 |
-
prediction_df = _create_prediction_df(predictions,
|
| 167 |
all_predictions.append(prediction_df)
|
| 168 |
|
| 169 |
# Clean up memory
|
| 170 |
-
del
|
| 171 |
del model
|
| 172 |
del predictions
|
| 173 |
torch.cuda.empty_cache() # Clear CUDA cache if using GPU
|
| 174 |
|
|
|
|
|
|
|
| 175 |
# Combine all predictions
|
| 176 |
final_df = pd.concat(all_predictions, ignore_index=True)
|
| 177 |
|
|
|
|
| 5 |
import yaml
|
| 6 |
import os
|
| 7 |
from datasets import load_dataset
|
| 8 |
+
import gdown
|
| 9 |
|
| 10 |
class ProtHGT(torch.nn.Module):
|
| 11 |
def __init__(self, data,hidden_channels, num_heads, num_layers, mlp_hidden_layers, mlp_dropout):
|
|
|
|
| 45 |
|
| 46 |
return self.mlp(z).view(-1), x_dict
|
| 47 |
|
| 48 |
+
def _load_data(heterodata, protein_ids, go_category=None):
|
| 49 |
+
"""Process the loaded heterodata for specific proteins and GO categories."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
# Get protein indices for all input proteins
|
| 51 |
protein_indices = [heterodata['Protein']['id_mapping'][pid] for pid in protein_ids]
|
| 52 |
|
|
|
|
| 120 |
if isinstance(protein_ids, str):
|
| 121 |
protein_ids = [protein_ids]
|
| 122 |
|
| 123 |
+
# Load dataset once
|
| 124 |
+
# heterodata = load_dataset('HUBioDataLab/ProtHGT-KG', data_files="prothgt-kg.json.gz")
|
| 125 |
+
print('Loading data...')
|
| 126 |
+
file_id = "18u1o2sm8YjMo9joFw4Ilwvg0-rUU0PXK"
|
| 127 |
+
output = "data/prothgt-kg.pt"
|
| 128 |
+
|
| 129 |
+
url = f"https://drive.google.com/uc?id={file_id}"
|
| 130 |
+
print(f"Downloading file from {url}...")
|
| 131 |
+
try:
|
| 132 |
+
gdown.download(url, output, quiet=False)
|
| 133 |
+
print(f"File downloaded to {output}")
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f"Error downloading file: {e}")
|
| 136 |
+
raise
|
| 137 |
+
|
| 138 |
+
heterodata = torch.load(output)
|
| 139 |
+
print(heterodata.edge_types)
|
| 140 |
+
|
| 141 |
+
# Remove unnecessary edge types
|
| 142 |
+
edge_types_to_remove = [
|
| 143 |
+
('Protein', 'protein_function', 'GO_term_F'),
|
| 144 |
+
('Protein', 'protein_function', 'GO_term_P'),
|
| 145 |
+
('Protein', 'protein_function', 'GO_term_C'),
|
| 146 |
+
('GO_term_F', 'rev_protein_function', 'Protein'),
|
| 147 |
+
('GO_term_P', 'rev_protein_function', 'Protein'),
|
| 148 |
+
('GO_term_C', 'rev_protein_function', 'Protein')
|
| 149 |
+
]
|
| 150 |
+
|
| 151 |
+
for edge_type in edge_types_to_remove:
|
| 152 |
+
if edge_type in heterodata.edge_index_dict:
|
| 153 |
+
del heterodata.edge_index_dict[edge_type]
|
| 154 |
+
|
| 155 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 156 |
+
|
| 157 |
for go_cat, model_config_path, model_path in zip(go_category, model_config_paths, model_paths):
|
| 158 |
print(f'Generating predictions for {go_cat}...')
|
| 159 |
|
| 160 |
+
# Process data for current GO category
|
| 161 |
+
processed_data = _load_data(heterodata, protein_ids, go_cat)
|
| 162 |
|
| 163 |
+
# Load model config
|
| 164 |
with open(model_config_path, 'r') as file:
|
| 165 |
model_config = yaml.safe_load(file)
|
| 166 |
|
| 167 |
# Initialize model with configuration
|
| 168 |
model = ProtHGT(
|
| 169 |
+
processed_data,
|
| 170 |
hidden_channels=model_config['hidden_channels'][0],
|
| 171 |
num_heads=model_config['num_heads'],
|
| 172 |
num_layers=model_config['num_layers'],
|
|
|
|
| 179 |
print(f'Loaded model weights from {model_path}')
|
| 180 |
|
| 181 |
# Generate predictions
|
| 182 |
+
predictions = _generate_predictions(processed_data, model, go_cat)
|
| 183 |
+
prediction_df = _create_prediction_df(predictions, processed_data, protein_ids, go_cat)
|
| 184 |
all_predictions.append(prediction_df)
|
| 185 |
|
| 186 |
# Clean up memory
|
| 187 |
+
del processed_data
|
| 188 |
del model
|
| 189 |
del predictions
|
| 190 |
torch.cuda.empty_cache() # Clear CUDA cache if using GPU
|
| 191 |
|
| 192 |
+
del heterodata
|
| 193 |
+
|
| 194 |
# Combine all predictions
|
| 195 |
final_df = pd.concat(all_predictions, ignore_index=True)
|
| 196 |
|