Spaces:
Runtime error
Runtime error
| from dataclasses import dataclass | |
| from transformers import ( | |
| MegatronBertConfig, | |
| MegatronBertForPreTraining, | |
| AutoTokenizer, | |
| ) | |
| from pytorch_lightning import ( | |
| LightningModule, | |
| Trainer, | |
| ) | |
| from pytorch_lightning.callbacks import ( | |
| LearningRateMonitor, | |
| ) | |
| import argparse | |
| import torch | |
| import os | |
| import numpy as np | |
| import time | |
| from fengshen.data.universal_datamodule import UniversalDataModule | |
| from fengshen.data.data_utils.sop_utils import get_a_and_b_segments | |
| from fengshen.data.data_utils.truncate_utils import truncate_segments | |
| from fengshen.data.data_utils.token_type_utils import create_tokens_and_tokentypes | |
| from fengshen.data.data_utils.mask_utils import create_masked_lm_predictions | |
| from fengshen.models.model_utils import ( | |
| add_module_args, | |
| configure_optimizers, | |
| get_total_steps, | |
| ) | |
| from fengshen.utils.universal_checkpoint import UniversalCheckpoint | |
| from torch.utils.data._utils.collate import default_collate | |
| SHOW_DATA = False | |
| class ErLangShenCollator: | |
| ''' | |
| 由input处理成samples,也就是最终模型的输入 | |
| 其中主要处理逻辑在__call__里 | |
| 包含Mask和Sop任务 | |
| ''' | |
| tokenizer: None # 分词 | |
| max_seq_length: 512 | |
| masked_lm_prob: 0.15 | |
| content_key: str = 'text' | |
| # 一些预处理操作 | |
| def setup(self): | |
| from fengshen.data.data_utils.sentence_split import ChineseSentenceSplitter | |
| self.sentence_split = ChineseSentenceSplitter() | |
| self.np_rng = np.random.RandomState(seed=((int(time.time()) % 2**32))) | |
| inv_vocab = {v: k for k, v in self.tokenizer.vocab.items()} | |
| self.vocab_id_list = list(inv_vocab.keys()) | |
| self.vocab_id_to_token_dict = inv_vocab | |
| def __call__(self, samples): | |
| ''' | |
| samples: 一个sample长这样{"text": "hello world"} | |
| ''' | |
| model_inputs = [] | |
| for s in samples: | |
| sentences = self.sentence_split.tokenize(s[self.content_key]) | |
| # Divide sample into two segments (A and B). | |
| tokenized_sentences = [self.tokenizer.convert_tokens_to_ids( | |
| self.tokenizer.tokenize(sent)) for sent in sentences] | |
| if len(tokenized_sentences) == 0: | |
| print('find empty sentence') | |
| continue | |
| if len(tokenized_sentences) > 1: | |
| tokens_a, tokens_b, is_next_random = get_a_and_b_segments(tokenized_sentences, | |
| self.np_rng) | |
| else: | |
| tokens_a = tokenized_sentences[0] | |
| tokens_b = [] | |
| is_next_random = False | |
| # max_seq_length - 3因为还需要拼上[CLS] [SEP] [SEP] | |
| if len(tokens_a) == 0: | |
| continue | |
| _ = truncate_segments(tokens_a, tokens_b, len(tokens_a), | |
| len(tokens_b), self.max_seq_length-3, self.np_rng) | |
| # Build tokens and toketypes. | |
| tokens, tokentypes = create_tokens_and_tokentypes(tokens_a, tokens_b, | |
| self.tokenizer.cls_token_id, self.tokenizer.sep_token_id) | |
| # Masking. | |
| max_predictions_per_seq = self.masked_lm_prob * len(tokens) | |
| (tokens, masked_positions, masked_labels, _, _) = create_masked_lm_predictions( | |
| tokens, self.vocab_id_list, self.vocab_id_to_token_dict, self.masked_lm_prob, | |
| self.tokenizer.cls_token_id, self.tokenizer.sep_token_id, self.tokenizer.mask_token_id, | |
| max_predictions_per_seq, self.np_rng, | |
| masking_style='bert') | |
| # Some checks. | |
| num_tokens = len(tokens) | |
| padding_length = self.max_seq_length - num_tokens | |
| assert padding_length >= 0 | |
| assert len(tokentypes) == num_tokens | |
| assert len(masked_positions) == len(masked_labels) | |
| # Tokens and token types. | |
| filler = [self.tokenizer.pad_token_id] * padding_length | |
| tokens_np = np.array(tokens + filler, dtype=np.int64) | |
| tokentypes_np = np.array(tokentypes + filler, dtype=np.int64) | |
| # Padding mask. | |
| padding_mask_np = np.array([1] * num_tokens + [0] * padding_length, | |
| dtype=np.int64) | |
| # Lables and loss mask. | |
| labels = [-100] * self.max_seq_length | |
| for i in range(len(masked_positions)): | |
| assert masked_positions[i] < num_tokens | |
| labels[masked_positions[i]] = masked_labels[i] | |
| labels_np = np.array(labels, dtype=np.int64) | |
| model_inputs.append( | |
| { | |
| 'input_ids': tokens_np, | |
| 'attention_mask': padding_mask_np, | |
| 'token_type_ids': tokentypes_np, | |
| 'labels': labels_np, | |
| 'next_sentence_label': int(is_next_random) | |
| } | |
| ) | |
| return default_collate(model_inputs) | |
| class ErLangShenBert(LightningModule): | |
| def add_module_specific_args(parent_parser): | |
| parser = parent_parser.add_argument_group('Erlangshen Bert') | |
| parser.add_argument('--masked_lm_prob', type=float, default=0.15) | |
| parser.add_argument('--max_seq_length', type=int, default=512) | |
| parser.add_argument('--sample_content_key', type=str, default='text') | |
| return parent_parser | |
| def __init__(self, args, tokenizer, **kwargs) -> None: | |
| super().__init__() | |
| self.save_hyperparameters(args) | |
| config = MegatronBertConfig.from_pretrained(args.model_path) | |
| self.config = config | |
| self.tokenizer = tokenizer | |
| self.model = MegatronBertForPreTraining(config) | |
| def setup(self, stage) -> None: | |
| if stage == 'fit': | |
| self.total_steps = get_total_steps(self.trainer, self.hparams) | |
| print('Total steps: {}' .format(self.total_steps)) | |
| def configure_optimizers(self): | |
| return configure_optimizers(self) | |
| def forward(self, **batch): | |
| return self.model(**batch) | |
| def detokenize(self, token_ids): | |
| toks = self.tokenizer.convert_ids_to_tokens(token_ids) | |
| return self.tokenizer.convert_tokens_to_string(toks) | |
| def comput_metrix(self, logits, labels): | |
| y_pred = torch.argmax(logits, dim=-1) | |
| y_pred = y_pred.view(size=(-1,)) | |
| y_true = labels.view(size=(-1,)).float() | |
| corr = torch.eq(y_pred, y_true) | |
| acc = torch.sum(corr.float())/labels.shape[0] | |
| return acc | |
| def training_step(self, batch, batch_idx): | |
| if self.trainer.global_rank == 0: | |
| global SHOW_DATA | |
| if not SHOW_DATA: | |
| print(self.config) | |
| print(self.model) | |
| SHOW_DATA = True | |
| print('source: {}'.format(batch['input_ids'][0])) | |
| print('target: {}'.format(batch['labels'][0])) | |
| print('source: {}'.format(self.detokenize(batch['input_ids'][0]))) | |
| label_idx = batch['labels'][0] != -100 | |
| print('target: {}'.format(self.detokenize( | |
| batch['labels'][0][label_idx]))) | |
| output = self(**batch) | |
| self.log('train_loss', output.loss, sync_dist=True) | |
| label_idx = batch['labels'] != -100 | |
| acc = self.comput_metrix( | |
| output.prediction_logits[label_idx].view(-1, output.prediction_logits.size(-1)), batch['labels'][label_idx]) | |
| self.log('train_acc', acc, sync_dist=True) | |
| return output.loss | |
| def validation_step(self, batch, batch_idx): | |
| output = self(**batch) | |
| self.log('val_loss', output.loss, sync_dist=True) | |
| return output.loss | |
| def on_load_checkpoint(self, checkpoint) -> None: | |
| # 兼容低版本lightning,低版本lightning从ckpt起来时steps数会被重置为0 | |
| global_step_offset = checkpoint["global_step"] | |
| if 'global_samples' in checkpoint: | |
| self.consumed_samples = checkpoint['global_samples'] | |
| self.trainer.fit_loop.epoch_loop._batches_that_stepped = global_step_offset | |
| if __name__ == '__main__': | |
| args_parser = argparse.ArgumentParser() | |
| args_parser = add_module_args(args_parser) | |
| args_parser = UniversalDataModule.add_data_specific_args(args_parser) | |
| args_parser = Trainer.add_argparse_args(args_parser) | |
| args_parser = ErLangShenBert.add_module_specific_args(args_parser) | |
| args_parser = UniversalCheckpoint.add_argparse_args(args_parser) | |
| args = args_parser.parse_args() | |
| tokenizer = AutoTokenizer.from_pretrained(args.model_path) | |
| collate_fn = ErLangShenCollator( | |
| tokenizer=tokenizer, | |
| max_seq_length=args.max_seq_length, | |
| masked_lm_prob=args.masked_lm_prob, | |
| content_key=args.sample_content_key, | |
| ) | |
| collate_fn.setup() | |
| data_module = UniversalDataModule(tokenizer=tokenizer, args=args, collate_fn=collate_fn) | |
| print('data load complete') | |
| model = ErLangShenBert(args, tokenizer=tokenizer) | |
| print('model load complete') | |
| lr_monitor = LearningRateMonitor(logging_interval='step') | |
| checkpoint_callback = UniversalCheckpoint(args) | |
| # 做兼容,如果目录不存在的话把这个参数去掉,不然会报错 | |
| if args.load_ckpt_path is not None and \ | |
| not os.path.exists(args.load_ckpt_path): | |
| print('--------warning no checkpoint found--------, remove args') | |
| args.load_ckpt_path = None | |
| trainer = Trainer.from_argparse_args(args, | |
| callbacks=[ | |
| lr_monitor, | |
| checkpoint_callback]) | |
| trainer.fit(model, data_module, ckpt_path=args.load_ckpt_path) | |