Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The IDEA Authors. All rights reserved. | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Auto Tokenizer class.""" | |
| import importlib | |
| import json | |
| import os | |
| from collections import OrderedDict | |
| from pathlib import Path | |
| from typing import TYPE_CHECKING, Dict, Optional, Tuple, Union | |
| from transformers.configuration_utils import PretrainedConfig | |
| from transformers.file_utils import ( | |
| cached_path, | |
| get_list_of_files, | |
| hf_bucket_url, | |
| is_offline_mode, | |
| is_sentencepiece_available, | |
| is_tokenizers_available, | |
| ) | |
| from transformers.tokenization_utils import PreTrainedTokenizer | |
| from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE | |
| from transformers.tokenization_utils_fast import PreTrainedTokenizerFast | |
| from transformers.utils import logging | |
| # from ..encoder_decoder import EncoderDecoderConfig | |
| from .auto_factory import _LazyAutoMapping | |
| from .configuration_auto import ( | |
| CONFIG_MAPPING_NAMES, | |
| AutoConfig, | |
| config_class_to_model_type, | |
| model_type_to_module_name, | |
| replace_list_option_in_docstrings, | |
| ) | |
| from .dynamic import get_class_from_dynamic_module | |
| logger = logging.get_logger(__name__) | |
| if TYPE_CHECKING: | |
| # This significantly improves completion suggestion performance when | |
| # the transformers package is used with Microsoft's Pylance language server. | |
| TOKENIZER_MAPPING_NAMES: OrderedDict[str, | |
| Tuple[Optional[str], Optional[str]]] = OrderedDict() | |
| else: | |
| TOKENIZER_MAPPING_NAMES = OrderedDict( | |
| [ | |
| ("roformer", ("RoFormerTokenizer", None)), | |
| ("longformer", ("LongformerTokenizer", None)), | |
| ] | |
| ) | |
| TOKENIZER_MAPPING = _LazyAutoMapping( | |
| CONFIG_MAPPING_NAMES, TOKENIZER_MAPPING_NAMES) | |
| CONFIG_TO_TYPE = {v: k for k, v in CONFIG_MAPPING_NAMES.items()} | |
| def tokenizer_class_from_name(class_name: str): | |
| if class_name == "PreTrainedTokenizerFast": | |
| return PreTrainedTokenizerFast | |
| for module_name, tokenizers in TOKENIZER_MAPPING_NAMES.items(): | |
| if class_name in tokenizers: | |
| module_name = model_type_to_module_name(module_name) | |
| module = importlib.import_module( | |
| f".{module_name}", "transformers.models") | |
| return getattr(module, class_name) | |
| for config, tokenizers in TOKENIZER_MAPPING._extra_content.items(): | |
| for tokenizer in tokenizers: | |
| if getattr(tokenizer, "__name__", None) == class_name: | |
| return tokenizer | |
| return None | |
| def get_tokenizer_config( | |
| pretrained_model_name_or_path: Union[str, os.PathLike], | |
| cache_dir: Optional[Union[str, os.PathLike]] = None, | |
| force_download: bool = False, | |
| resume_download: bool = False, | |
| proxies: Optional[Dict[str, str]] = None, | |
| use_auth_token: Optional[Union[bool, str]] = None, | |
| revision: Optional[str] = None, | |
| local_files_only: bool = False, | |
| **kwargs, | |
| ): | |
| """ | |
| Loads the tokenizer configuration from a pretrained model tokenizer configuration. | |
| Args: | |
| pretrained_model_name_or_path (`str` or `os.PathLike`): | |
| This can be either: | |
| - a string, the *model id* of a pretrained model configuration hosted inside a model repo on | |
| huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced | |
| under a user or organization name, like `dbmdz/bert-base-german-cased`. | |
| - a path to a *directory* containing a configuration file saved using the | |
| [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. | |
| cache_dir (`str` or `os.PathLike`, *optional*): | |
| Path to a directory in which a downloaded pretrained model configuration should be cached if the standard | |
| cache should not be used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force to (re-)download the configuration files and override the cached versions if they | |
| exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. | |
| use_auth_token (`str` or *bool*, *optional*): | |
| The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
| when running `transformers-cli login` (stored in `~/.huggingface`). | |
| revision(`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
| git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
| identifier allowed by git. | |
| local_files_only (`bool`, *optional*, defaults to `False`): | |
| If `True`, will only try to load the tokenizer configuration from local files. | |
| <Tip> | |
| Passing `use_auth_token=True` is required when you want to use a private model. | |
| </Tip> | |
| Returns: | |
| `Dict`: The configuration of the tokenizer. | |
| Examples: | |
| ```python | |
| # Download configuration from huggingface.co and cache. | |
| tokenizer_config = get_tokenizer_config("bert-base-uncased") | |
| # This model does not have a tokenizer config so the result will be an empty dict. | |
| tokenizer_config = get_tokenizer_config("xlm-roberta-base") | |
| # Save a pretrained tokenizer locally and you can reload its config | |
| from transformers import AutoTokenizer | |
| tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") | |
| tokenizer.save_pretrained("tokenizer-test") | |
| tokenizer_config = get_tokenizer_config("tokenizer-test") | |
| ```""" | |
| if is_offline_mode() and not local_files_only: | |
| logger.info("Offline mode: forcing local_files_only=True") | |
| local_files_only = True | |
| # Will raise a ValueError if `pretrained_model_name_or_path` is not a valid path or model identifier | |
| repo_files = get_list_of_files( | |
| pretrained_model_name_or_path, | |
| revision=revision, | |
| use_auth_token=use_auth_token, | |
| local_files_only=local_files_only, | |
| ) | |
| if TOKENIZER_CONFIG_FILE not in [Path(f).name for f in repo_files]: | |
| return {} | |
| pretrained_model_name_or_path = str(pretrained_model_name_or_path) | |
| if os.path.isdir(pretrained_model_name_or_path): | |
| config_file = os.path.join( | |
| pretrained_model_name_or_path, TOKENIZER_CONFIG_FILE) | |
| else: | |
| config_file = hf_bucket_url( | |
| pretrained_model_name_or_path, filename=TOKENIZER_CONFIG_FILE, revision=revision, mirror=None | |
| ) | |
| try: | |
| # Load from URL or cache if already cached | |
| resolved_config_file = cached_path( | |
| config_file, | |
| cache_dir=cache_dir, | |
| force_download=force_download, | |
| proxies=proxies, | |
| resume_download=resume_download, | |
| local_files_only=local_files_only, | |
| use_auth_token=use_auth_token, | |
| ) | |
| except EnvironmentError: | |
| logger.info( | |
| "Could not locate the tokenizer configuration file, will try to use the model config instead.") | |
| return {} | |
| with open(resolved_config_file, encoding="utf-8") as reader: | |
| return json.load(reader) | |
| class AutoTokenizer: | |
| r""" | |
| This is a generic tokenizer class that will be instantiated as one of the tokenizer classes of the library when | |
| created with the [`AutoTokenizer.from_pretrained`] class method. | |
| This class cannot be instantiated directly using `__init__()` (throws an error). | |
| """ | |
| def __init__(self): | |
| raise EnvironmentError( | |
| "AutoTokenizer is designed to be instantiated " | |
| "using the `AutoTokenizer.from_pretrained(pretrained_model_name_or_path)` method." | |
| ) | |
| def from_pretrained(cls, pretrained_model_name_or_path, *inputs, **kwargs): | |
| r""" | |
| Instantiate one of the tokenizer classes of the library from a pretrained model vocabulary. | |
| The tokenizer class to instantiate is selected based on the `model_type` property of the config object (either | |
| passed as an argument or loaded from `pretrained_model_name_or_path` if possible), or when it's missing, by | |
| falling back to using pattern matching on `pretrained_model_name_or_path`: | |
| List options | |
| Params: | |
| pretrained_model_name_or_path (`str` or `os.PathLike`): | |
| Can be either: | |
| - A string, the *model id* of a predefined tokenizer hosted inside a model repo on huggingface.co. | |
| Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a | |
| user or organization name, like `dbmdz/bert-base-german-cased`. | |
| - A path to a *directory* containing vocabulary files required by the tokenizer, for instance saved | |
| using the [`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`. | |
| - A path or url to a single saved vocabulary file if and only if the tokenizer only requires a | |
| single vocabulary file (like Bert or XLNet), e.g.: `./my_model_directory/vocab.txt`. (Not | |
| applicable to all derived classes) | |
| inputs (additional positional arguments, *optional*): | |
| Will be passed along to the Tokenizer `__init__()` method. | |
| config ([`PretrainedConfig`], *optional*) | |
| The configuration object used to dertermine the tokenizer class to instantiate. | |
| cache_dir (`str` or `os.PathLike`, *optional*): | |
| Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
| standard cache should not be used. | |
| force_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to force the (re-)download the model weights and configuration files and override the | |
| cached versions if they exist. | |
| resume_download (`bool`, *optional*, defaults to `False`): | |
| Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |
| file exists. | |
| proxies (`Dict[str, str]`, *optional*): | |
| A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
| 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
| revision(`str`, *optional*, defaults to `"main"`): | |
| The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
| git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
| identifier allowed by git. | |
| subfolder (`str`, *optional*): | |
| In case the relevant files are located inside a subfolder of the model repo on huggingface.co (e.g. for | |
| facebook/rag-token-base), specify it here. | |
| use_fast (`bool`, *optional*, defaults to `True`): | |
| Whether or not to try to load the fast version of the tokenizer. | |
| tokenizer_type (`str`, *optional*): | |
| Tokenizer type to be loaded. | |
| trust_remote_code (`bool`, *optional*, defaults to `False`): | |
| Whether or not to allow for custom models defined on the Hub in their own modeling files. This option | |
| should only be set to `True` for repositories you trust and in which you have read the code, as it will | |
| execute code present on the Hub on your local machine. | |
| kwargs (additional keyword arguments, *optional*): | |
| Will be passed to the Tokenizer `__init__()` method. Can be used to set special tokens like | |
| `bos_token`, `eos_token`, `unk_token`, `sep_token`, `pad_token`, `cls_token`, `mask_token`, | |
| `additional_special_tokens`. See parameters in the `__init__()` for more details. | |
| Examples: | |
| ```python | |
| >>> from transformers import AutoTokenizer | |
| >>> # Download vocabulary from huggingface.co and cache. | |
| >>> tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
| >>> # Download vocabulary from huggingface.co (user-uploaded) and cache. | |
| >>> tokenizer = AutoTokenizer.from_pretrained("dbmdz/bert-base-german-cased") | |
| >>> # If vocabulary files are in a directory (e.g. tokenizer was saved using *save_pretrained('./test/saved_model/')*) | |
| >>> tokenizer = AutoTokenizer.from_pretrained("./test/bert_saved_model/") | |
| ```""" | |
| config = kwargs.pop("config", None) | |
| kwargs["_from_auto"] = True | |
| use_fast = kwargs.pop("use_fast", True) | |
| tokenizer_type = kwargs.pop("tokenizer_type", None) | |
| trust_remote_code = kwargs.pop("trust_remote_code", False) | |
| # First, let's see whether the tokenizer_type is passed so that we can leverage it | |
| if tokenizer_type is not None: | |
| tokenizer_class = None | |
| tokenizer_class_tuple = TOKENIZER_MAPPING_NAMES.get( | |
| tokenizer_type, None) | |
| if tokenizer_class_tuple is None: | |
| raise ValueError( | |
| f"Passed `tokenizer_type` {tokenizer_type} does not exist. `tokenizer_type` should be one of " | |
| f"{', '.join(c for c in TOKENIZER_MAPPING_NAMES.keys())}." | |
| ) | |
| tokenizer_class_name, tokenizer_fast_class_name = tokenizer_class_tuple | |
| if use_fast and tokenizer_fast_class_name is not None: | |
| tokenizer_class = tokenizer_class_from_name( | |
| tokenizer_fast_class_name) | |
| if tokenizer_class is None: | |
| tokenizer_class = tokenizer_class_from_name( | |
| tokenizer_class_name) | |
| if tokenizer_class is None: | |
| raise ValueError( | |
| f"Tokenizer class {tokenizer_class_name} is not currently imported.") | |
| return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
| # Next, let's try to use the tokenizer_config file to get the tokenizer class. | |
| tokenizer_config = get_tokenizer_config( | |
| pretrained_model_name_or_path, **kwargs) | |
| config_tokenizer_class = tokenizer_config.get("tokenizer_class") | |
| tokenizer_auto_map = tokenizer_config.get("auto_map") | |
| # If that did not work, let's try to use the config. | |
| if config_tokenizer_class is None: | |
| if not isinstance(config, PretrainedConfig): | |
| config = AutoConfig.from_pretrained( | |
| pretrained_model_name_or_path, trust_remote_code=trust_remote_code, **kwargs | |
| ) | |
| config_tokenizer_class = config.tokenizer_class | |
| if hasattr(config, "auto_map") and "AutoTokenizer" in config.auto_map: | |
| tokenizer_auto_map = config.auto_map["AutoTokenizer"] | |
| # If we have the tokenizer class from the tokenizer config or the model config we're good! | |
| if config_tokenizer_class is not None: | |
| tokenizer_class = None | |
| if tokenizer_auto_map is not None: | |
| if not trust_remote_code: | |
| raise ValueError( | |
| f"Loading {pretrained_model_name_or_path} requires you to execute the tokenizer file in that repo " | |
| "on your local machine. Make sure you have read the code there to avoid malicious use, then set " | |
| "the option `trust_remote_code=True` to remove this error." | |
| ) | |
| if kwargs.get("revision", None) is None: | |
| logger.warn( | |
| "Explicitly passing a `revision` is encouraged when loading a model with custom code to ensure " | |
| "no malicious code has been contributed in a newer revision." | |
| ) | |
| if use_fast and tokenizer_auto_map[1] is not None: | |
| class_ref = tokenizer_auto_map[1] | |
| else: | |
| class_ref = tokenizer_auto_map[0] | |
| module_file, class_name = class_ref.split(".") | |
| tokenizer_class = get_class_from_dynamic_module( | |
| pretrained_model_name_or_path, module_file + ".py", class_name, **kwargs | |
| ) | |
| elif use_fast and not config_tokenizer_class.endswith("Fast"): | |
| tokenizer_class_candidate = f"{config_tokenizer_class}Fast" | |
| tokenizer_class = tokenizer_class_from_name( | |
| tokenizer_class_candidate) | |
| if tokenizer_class is None: | |
| tokenizer_class_candidate = config_tokenizer_class | |
| tokenizer_class = tokenizer_class_from_name( | |
| tokenizer_class_candidate) | |
| if tokenizer_class is None: | |
| raise ValueError( | |
| f"Tokenizer class {tokenizer_class_candidate} does not exist or is not currently imported." | |
| ) | |
| return tokenizer_class.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
| model_type = config_class_to_model_type(type(config).__name__) | |
| if model_type is not None: | |
| tokenizer_class_py, tokenizer_class_fast = TOKENIZER_MAPPING[type( | |
| config)] | |
| if tokenizer_class_fast and (use_fast or tokenizer_class_py is None): | |
| return tokenizer_class_fast.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
| else: | |
| if tokenizer_class_py is not None: | |
| return tokenizer_class_py.from_pretrained(pretrained_model_name_or_path, *inputs, **kwargs) | |
| else: | |
| raise ValueError( | |
| "This tokenizer cannot be instantiated. Please make sure you have `sentencepiece` installed " | |
| "in order to use this tokenizer." | |
| ) | |
| raise ValueError( | |
| f"Unrecognized configuration class {config.__class__} to build an AutoTokenizer.\n" | |
| f"Model type should be one of {', '.join(c.__name__ for c in TOKENIZER_MAPPING.keys())}." | |
| ) | |
| def register(config_class, slow_tokenizer_class=None, fast_tokenizer_class=None): | |
| """ | |
| Register a new tokenizer in this mapping. | |
| Args: | |
| config_class ([`PretrainedConfig`]): | |
| The configuration corresponding to the model to register. | |
| slow_tokenizer_class ([`PretrainedTokenizer`], *optional*): | |
| The slow tokenizer to register. | |
| slow_tokenizer_class ([`PretrainedTokenizerFast`], *optional*): | |
| The fast tokenizer to register. | |
| """ | |
| if slow_tokenizer_class is None and fast_tokenizer_class is None: | |
| raise ValueError( | |
| "You need to pass either a `slow_tokenizer_class` or a `fast_tokenizer_class") | |
| if slow_tokenizer_class is not None and issubclass(slow_tokenizer_class, PreTrainedTokenizerFast): | |
| raise ValueError( | |
| "You passed a fast tokenizer in the `slow_tokenizer_class`.") | |
| if fast_tokenizer_class is not None and issubclass(fast_tokenizer_class, PreTrainedTokenizer): | |
| raise ValueError( | |
| "You passed a slow tokenizer in the `fast_tokenizer_class`.") | |
| if ( | |
| slow_tokenizer_class is not None | |
| and fast_tokenizer_class is not None | |
| and issubclass(fast_tokenizer_class, PreTrainedTokenizerFast) | |
| and fast_tokenizer_class.slow_tokenizer_class != slow_tokenizer_class | |
| ): | |
| raise ValueError( | |
| "The fast tokenizer class you are passing has a `slow_tokenizer_class` attribute that is not " | |
| "consistent with the slow tokenizer class you passed (fast tokenizer has " | |
| f"{fast_tokenizer_class.slow_tokenizer_class} and you passed {slow_tokenizer_class}. Fix one of those " | |
| "so they match!" | |
| ) | |
| # Avoid resetting a set slow/fast tokenizer if we are passing just the other ones. | |
| if config_class in TOKENIZER_MAPPING._extra_content: | |
| existing_slow, existing_fast = TOKENIZER_MAPPING[config_class] | |
| if slow_tokenizer_class is None: | |
| slow_tokenizer_class = existing_slow | |
| if fast_tokenizer_class is None: | |
| fast_tokenizer_class = existing_fast | |
| TOKENIZER_MAPPING.register( | |
| config_class, (slow_tokenizer_class, fast_tokenizer_class)) | |