Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2021 The IDEA Authors. All rights reserved. | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ PyTorch T5 model. """ | |
| import copy | |
| import math | |
| import os | |
| import warnings | |
| import torch | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss | |
| from torch.utils.checkpoint import checkpoint | |
| from transformers.activations import ACT2FN | |
| from transformers.file_utils import ( | |
| DUMMY_INPUTS, | |
| DUMMY_MASK, | |
| add_start_docstrings, | |
| add_start_docstrings_to_model_forward, | |
| is_torch_fx_proxy, | |
| replace_return_docstrings, | |
| ) | |
| from transformers.modeling_outputs import ( | |
| BaseModelOutput, | |
| BaseModelOutputWithPastAndCrossAttentions, | |
| Seq2SeqLMOutput, | |
| Seq2SeqModelOutput, | |
| ) | |
| from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer | |
| from transformers.utils import logging | |
| from transformers.utils.model_parallel_utils import assert_device_map, get_device_map | |
| from .configuration_megatron_t5 import T5Config | |
| import numpy as np | |
| logger = logging.get_logger(__name__) | |
| _CONFIG_FOR_DOC = "T5Config" | |
| _TOKENIZER_FOR_DOC = "T5Tokenizer" | |
| _CHECKPOINT_FOR_DOC = "T5-small" | |
| #################################################### | |
| # This dict contains ids and associated url | |
| # for the pretrained weights provided with the models | |
| #################################################### | |
| T5_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "T5-small", | |
| "T5-base", | |
| "T5-large", | |
| "T5-3b", | |
| "T5-11b", | |
| # See all T5 models at https://huggingface.co/models?filter=T5 | |
| ] | |
| #################################################### | |
| # This is a conversion method from TF 1.0 to PyTorch | |
| # More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28 | |
| #################################################### | |
| def load_tf_weights_in_T5(model, config, tf_checkpoint_path): | |
| """Load tf checkpoints in a pytorch model.""" | |
| try: | |
| import re | |
| import numpy as np | |
| import tensorflow as tf | |
| except ImportError: | |
| logger.error( | |
| "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " | |
| "https://www.tensorflow.org/install/ for installation instructions." | |
| ) | |
| raise | |
| tf_path = os.path.abspath(tf_checkpoint_path) | |
| logger.info(f"Converting TensorFlow checkpoint from {tf_path}") | |
| # Load weights from TF model | |
| init_vars = tf.train.list_variables(tf_path) | |
| names = [] | |
| tf_weights = {} | |
| for name, shape in init_vars: | |
| logger.info(f"Loading TF weight {name} with shape {shape}") | |
| array = tf.train.load_variable(tf_path, name) | |
| names.append(name) | |
| tf_weights[name] = array | |
| for txt_name in names: | |
| name = txt_name.split("/") | |
| # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
| # which are not required for using pretrained model | |
| if any( | |
| n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", | |
| "AdamWeightDecayOptimizer_1", "global_step"] | |
| for n in name | |
| ): | |
| logger.info(f"Skipping {'/'.join(name)}") | |
| tf_weights.pop(txt_name, None) | |
| continue | |
| if "_slot_" in name[-1]: | |
| logger.info(f"Skipping {'/'.join(name)}") | |
| tf_weights.pop(txt_name, None) | |
| continue | |
| pointer = model | |
| array = tf_weights[txt_name] | |
| for m_name in name: | |
| if re.fullmatch(r"[A-Za-z]+_\d+", m_name): | |
| scope_names = re.split(r"_(\d+)", m_name) | |
| else: | |
| scope_names = [m_name] | |
| if scope_names[0] in ["kernel", "scale", "embedding"]: | |
| pointer = getattr(pointer, "weight") | |
| elif scope_names[0] == "self_attention": | |
| pointer = getattr(pointer, "layer") | |
| pointer = pointer[0] | |
| elif scope_names[0] == "enc_dec_attention": | |
| pointer = getattr(pointer, "layer") | |
| pointer = pointer[1] | |
| elif scope_names[0] == "dense_relu_dense": | |
| pointer = getattr(pointer, "layer") | |
| pointer = pointer[2] | |
| elif scope_names[0] == "rms_norm": | |
| if hasattr(pointer, "layer_norm"): | |
| pointer = getattr(pointer, "layer_norm") | |
| elif hasattr(pointer, "final_layer_norm"): | |
| pointer = getattr(pointer, "final_layer_norm") | |
| elif scope_names[0] == "scale": | |
| pointer = getattr(pointer, "weight") | |
| elif scope_names[0] == "output_bias" or scope_names[0] == "beta": | |
| pointer = getattr(pointer, "bias") | |
| elif scope_names[0] == "squad": | |
| pointer = getattr(pointer, "classifier") | |
| elif scope_names[0] == "decoder" and name[1] == "logits": | |
| continue | |
| elif scope_names[0] == "logits": | |
| pointer = getattr(pointer, "lm_head") | |
| elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit(): | |
| pointer = getattr(pointer, f"wi_{scope_names[1]}") | |
| continue | |
| else: | |
| try: | |
| pointer = getattr(pointer, scope_names[0]) | |
| except AttributeError: | |
| logger.info(f"Skipping {'/'.join(name)}") | |
| continue | |
| if len(scope_names) >= 2: | |
| num = int(scope_names[1]) | |
| pointer = pointer[num] | |
| if scope_names[0] not in ["kernel", "scale", "embedding"]: | |
| pointer = getattr(pointer, "weight") | |
| if scope_names[0] != "embedding": | |
| logger.info( | |
| f"Transposing numpy weight of shape {array.shape} for {name}") | |
| array = np.transpose(array) | |
| try: | |
| assert ( | |
| pointer.shape == array.shape | |
| ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" | |
| except AssertionError as e: | |
| e.args += (pointer.shape, array.shape) | |
| raise | |
| logger.info(f"Initialize PyTorch weight {name}") | |
| pointer.data = torch.from_numpy(array.astype(np.float32)) | |
| tf_weights.pop(txt_name, None) | |
| logger.info( | |
| f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") | |
| return model | |
| #################################################### | |
| # PyTorch Models are constructed by sub-classing | |
| # - torch.nn.Module for the layers and | |
| # - PreTrainedModel for the models (it-self a sub-class of nn.Module) | |
| #################################################### | |
| PARALLELIZE_DOCSTRING = r""" | |
| This is an experimental feature and is a subject to change at a moment's notice. | |
| Uses a device map to distribute attention modules of the model across several devices. If no device map is given, | |
| it will evenly distribute blocks across all devices. | |
| Args: | |
| device_map (:obj:`Dict[int, list]`, optional, defaults to None): | |
| A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always | |
| automatically mapped to the first device (for esoteric reasons). That means that the first device should | |
| have fewer attention modules mapped to it than other devices. For reference, the T5 models have the | |
| following number of attention modules: | |
| - T5-small: 6 | |
| - T5-base: 12 | |
| - T5-large: 24 | |
| - T5-3b: 24 | |
| - T5-11b: 24 | |
| Example:: | |
| # Here is an example of a device map on a machine with 4 GPUs using T5-3b, | |
| # which has a total of 24 attention modules: | |
| model = T5ForConditionalGeneration.from_pretrained('T5-3b') | |
| device_map = {0: [0, 1, 2], | |
| 1: [3, 4, 5, 6, 7, 8, 9], | |
| 2: [10, 11, 12, 13, 14, 15, 16], | |
| 3: [17, 18, 19, 20, 21, 22, 23]} | |
| model.parallelize(device_map) | |
| """ | |
| DEPARALLELIZE_DOCSTRING = r""" | |
| Moves the model to cpu from a model parallel state. | |
| Example:: | |
| # On a 4 GPU machine with T5-3b: | |
| model = T5ForConditionalGeneration.from_pretrained('T5-3b') | |
| device_map = {0: [0, 1, 2], | |
| 1: [3, 4, 5, 6, 7, 8, 9], | |
| 2: [10, 11, 12, 13, 14, 15, 16], | |
| 3: [17, 18, 19, 20, 21, 22, 23]} | |
| model.parallelize(device_map) # Splits the model across several devices | |
| model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() | |
| """ | |
| class T5LayerNorm(nn.Module): | |
| def __init__(self, hidden_size, eps=1e-6): | |
| """ | |
| Construct a layernorm module in the T5 style No bias and no subtraction of mean. | |
| """ | |
| super().__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, hidden_states): | |
| # layer norm should always be calculated in float32 | |
| variance = hidden_states.to(torch.float32).pow( | |
| 2).mean(-1, keepdim=True) | |
| hidden_states = hidden_states * \ | |
| torch.rsqrt(variance + self.variance_epsilon) | |
| # convert into float16 if necessary | |
| if self.weight.dtype == torch.float16: | |
| hidden_states = hidden_states.to(torch.float16) | |
| return self.weight * hidden_states | |
| class T5DenseReluDense(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| # @IDEA modified -> bias=False -> bias=True | |
| self.wi = nn.Linear(config.d_model, config.d_ff, bias=True) | |
| self.wo = nn.Linear(config.d_ff, config.d_model, bias=True) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| def forward(self, hidden_states): | |
| hidden_states = self.wi(hidden_states) | |
| hidden_states = nn.functional.relu(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.wo(hidden_states) | |
| return hidden_states | |
| class T5DenseGeluDense(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| # @IDEA modified -> bias=False -> bias=True | |
| self.wi = nn.Linear(config.d_model, config.d_ff, bias=True) | |
| self.wo = nn.Linear(config.d_ff, config.d_model, bias=True) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| def forward(self, hidden_states): | |
| hidden_states = self.wi(hidden_states) | |
| hidden_states = nn.functional.gelu(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.wo(hidden_states) | |
| return hidden_states | |
| class T5DenseGatedGeluDense(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| # @IDEA modified -> bias=False -> bias=True | |
| self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=True) | |
| self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=True) | |
| self.wo = nn.Linear(config.d_ff, config.d_model, bias=True) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| self.gelu_act = ACT2FN["gelu_new"] | |
| def forward(self, hidden_states): | |
| hidden_gelu = self.gelu_act(self.wi_0(hidden_states)) | |
| hidden_linear = self.wi_1(hidden_states) | |
| hidden_states = hidden_gelu * hidden_linear | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.wo(hidden_states) | |
| return hidden_states | |
| class T5LayerFF(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| # @IDEA modified -> T5LayerNorm -> nn.LayerNorm | |
| # self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
| self.layer_norm = nn.LayerNorm( | |
| config.d_model, eps=config.layer_norm_epsilon) | |
| if config.feed_forward_proj == "relu": | |
| self.DenseReluDense = T5DenseReluDense(config) | |
| elif config.feed_forward_proj == "gelu": | |
| self.DenseReluDense = T5DenseGeluDense(config) | |
| else: | |
| raise ValueError( | |
| f"{self.config.feed_forward_proj} is not supported. Choose between `relu` and `gated-gelu`" | |
| ) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| def forward(self, hidden_states): | |
| forwarded_states = self.layer_norm(hidden_states) | |
| forwarded_states = self.DenseReluDense(forwarded_states) | |
| hidden_states = hidden_states + self.dropout(forwarded_states) | |
| return hidden_states | |
| class T5Attention(nn.Module): | |
| def __init__(self, config: T5Config, has_relative_attention_bias=False): | |
| super().__init__() | |
| self.is_decoder = config.is_decoder | |
| self.has_relative_attention_bias = has_relative_attention_bias | |
| self.relative_attention_num_buckets = config.relative_attention_num_buckets | |
| self.d_model = config.d_model | |
| self.key_value_proj_dim = config.d_kv | |
| self.n_heads = config.num_heads | |
| self.dropout = config.dropout_rate | |
| self.inner_dim = self.n_heads * self.key_value_proj_dim | |
| # Mesh TensorFlow initialization to avoid scaling before softmax | |
| # @IDEA modified -> bias=False -> bias=True | |
| self.q = nn.Linear(self.d_model, self.inner_dim, bias=True) | |
| self.k = nn.Linear(self.d_model, self.inner_dim, bias=True) | |
| self.v = nn.Linear(self.d_model, self.inner_dim, bias=True) | |
| self.o = nn.Linear(self.inner_dim, self.d_model, bias=True) | |
| if self.has_relative_attention_bias: | |
| self.relative_attention_bias = nn.Embedding( | |
| self.relative_attention_num_buckets, self.n_heads) | |
| self.pruned_heads = set() | |
| self.gradient_checkpointing = False | |
| def prune_heads(self, heads): | |
| if len(heads) == 0: | |
| return | |
| heads, index = find_pruneable_heads_and_indices( | |
| heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads | |
| ) | |
| # Prune linear layers | |
| self.q = prune_linear_layer(self.q, index) | |
| self.k = prune_linear_layer(self.k, index) | |
| self.v = prune_linear_layer(self.v, index) | |
| self.o = prune_linear_layer(self.o, index, dim=1) | |
| # Update hyper params | |
| self.n_heads = self.n_heads - len(heads) | |
| self.inner_dim = self.key_value_proj_dim * self.n_heads | |
| self.pruned_heads = self.pruned_heads.union(heads) | |
| def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): | |
| """ | |
| Adapted from Mesh Tensorflow: | |
| https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 | |
| Translate relative position to a bucket number for relative attention. The relative position is defined as | |
| memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to | |
| position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for | |
| small absolute relative_position and larger buckets for larger absolute relative_positions. All relative | |
| positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. | |
| This should allow for more graceful generalization to longer sequences than the model has been trained on | |
| Args: | |
| relative_position: an int32 Tensor | |
| bidirectional: a boolean - whether the attention is bidirectional | |
| num_buckets: an integer | |
| max_distance: an integer | |
| Returns: | |
| a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) | |
| """ | |
| relative_buckets = 0 | |
| if bidirectional: | |
| num_buckets //= 2 | |
| relative_buckets += (relative_position > | |
| 0).to(torch.long) * num_buckets | |
| relative_position = torch.abs(relative_position) | |
| else: | |
| relative_position = - \ | |
| torch.min(relative_position, | |
| torch.zeros_like(relative_position)) | |
| # now relative_position is in the range [0, inf) | |
| # half of the buckets are for exact increments in positions | |
| max_exact = num_buckets // 2 | |
| is_small = relative_position < max_exact | |
| # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance | |
| relative_postion_if_large = max_exact + ( | |
| torch.log(relative_position.float() / max_exact) | |
| / math.log(max_distance / max_exact) | |
| * (num_buckets - max_exact) | |
| ).to(torch.long) | |
| relative_postion_if_large = torch.min( | |
| relative_postion_if_large, torch.full_like( | |
| relative_postion_if_large, num_buckets - 1) | |
| ) | |
| relative_buckets += torch.where(is_small, | |
| relative_position, relative_postion_if_large) | |
| return relative_buckets | |
| def compute_bias(self, query_length, key_length): | |
| """Compute binned relative position bias""" | |
| context_position = torch.arange( | |
| query_length, dtype=torch.long, device=self.relative_attention_bias.weight.device | |
| )[:, None] | |
| memory_position = torch.arange( | |
| key_length, dtype=torch.long, device=self.relative_attention_bias.weight.device | |
| )[None, :] | |
| relative_position = memory_position - \ | |
| context_position # shape (query_length, key_length) | |
| relative_position_bucket = self._relative_position_bucket( | |
| relative_position, # shape (query_length, key_length) | |
| bidirectional=(not self.is_decoder), | |
| num_buckets=self.relative_attention_num_buckets, | |
| ) | |
| # shape (query_length, key_length, num_heads) | |
| values = self.relative_attention_bias(relative_position_bucket) | |
| # shape (1, num_heads, query_length, key_length) | |
| values = values.permute([2, 0, 1]).unsqueeze(0) | |
| return values | |
| def forward( | |
| self, | |
| hidden_states, | |
| mask=None, | |
| key_value_states=None, | |
| position_bias=None, | |
| past_key_value=None, | |
| layer_head_mask=None, | |
| query_length=None, | |
| use_cache=False, | |
| output_attentions=False, | |
| ): | |
| """ | |
| Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). | |
| """ | |
| # Input is (batch_size, seq_length, dim) | |
| # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) | |
| # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) | |
| batch_size, seq_length = hidden_states.shape[:2] | |
| real_seq_length = seq_length | |
| if past_key_value is not None: | |
| assert ( | |
| len(past_key_value) == 2 | |
| ), f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" | |
| real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length | |
| key_length = real_seq_length if key_value_states is None else key_value_states.shape[ | |
| 1] | |
| def shape(states): | |
| """projection""" | |
| return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) | |
| def unshape(states): | |
| """reshape""" | |
| return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) | |
| def project(hidden_states, proj_layer, key_value_states, past_key_value): | |
| """projects hidden states correctly to key/query states""" | |
| if key_value_states is None: | |
| # self-attn | |
| # (batch_size, n_heads, seq_length, dim_per_head) | |
| hidden_states = shape(proj_layer(hidden_states)) | |
| elif past_key_value is None: | |
| # cross-attn | |
| # (batch_size, n_heads, seq_length, dim_per_head) | |
| hidden_states = shape(proj_layer(key_value_states)) | |
| if past_key_value is not None: | |
| if key_value_states is None: | |
| # self-attn | |
| # (batch_size, n_heads, key_length, dim_per_head) | |
| hidden_states = torch.cat( | |
| [past_key_value, hidden_states], dim=2) | |
| else: | |
| # cross-attn | |
| hidden_states = past_key_value | |
| return hidden_states | |
| # get query states | |
| # (batch_size, n_heads, seq_length, dim_per_head) | |
| query_states = shape(self.q(hidden_states)) | |
| # get key/value states | |
| key_states = project( | |
| hidden_states, self.k, key_value_states, past_key_value[ | |
| 0] if past_key_value is not None else None | |
| ) | |
| value_states = project( | |
| hidden_states, self.v, key_value_states, past_key_value[ | |
| 1] if past_key_value is not None else None | |
| ) | |
| # compute scores | |
| scores = torch.matmul( | |
| query_states, key_states.transpose(3, 2) | |
| ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 | |
| if position_bias is None: | |
| if not self.has_relative_attention_bias: | |
| position_bias = torch.zeros( | |
| (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype | |
| ) | |
| if self.gradient_checkpointing and self.training: | |
| position_bias.requires_grad = True | |
| else: | |
| position_bias = self.compute_bias(real_seq_length, key_length) | |
| # if key and values are already calculated | |
| # we want only the last query position bias | |
| if past_key_value is not None: | |
| position_bias = position_bias[:, :, -hidden_states.size(1):, :] | |
| if mask is not None: | |
| # (batch_size, n_heads, seq_length, key_length) | |
| position_bias = position_bias + mask | |
| # @IDEA modified -> delete scores += position_bias, use absolute positional | |
| # scores += position_bias | |
| scores = scores / math.sqrt(self.key_value_proj_dim) | |
| if mask is not None: | |
| scores = scores + mask | |
| attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( | |
| scores | |
| ) # (batch_size, n_heads, seq_length, key_length) | |
| attn_weights = nn.functional.dropout( | |
| attn_weights, p=0, training=self.training | |
| ) # (batch_size, n_heads, seq_length, key_length) | |
| # Mask heads if we want to | |
| if layer_head_mask is not None: | |
| attn_weights = attn_weights * layer_head_mask | |
| # (batch_size, seq_length, dim) | |
| attn_output = unshape(torch.matmul(attn_weights, value_states)) | |
| attn_output = self.o(attn_output) | |
| present_key_value_state = (key_states, value_states) if ( | |
| self.is_decoder and use_cache) else None | |
| outputs = (attn_output,) + \ | |
| (present_key_value_state,) + (position_bias,) | |
| if output_attentions: | |
| outputs = outputs + (attn_weights,) | |
| return outputs | |
| class T5LayerSelfAttention(nn.Module): | |
| def __init__(self, config, has_relative_attention_bias=False): | |
| super().__init__() | |
| # @IDEA modified -> T5LayerNorm -> nn.LayerNorm | |
| # self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
| self.layer_norm = nn.LayerNorm( | |
| config.d_model, eps=config.layer_norm_epsilon) | |
| self.SelfAttention = T5Attention( | |
| config, has_relative_attention_bias=has_relative_attention_bias) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| position_bias=None, | |
| layer_head_mask=None, | |
| past_key_value=None, | |
| use_cache=False, | |
| output_attentions=False, | |
| ): | |
| normed_hidden_states = self.layer_norm(hidden_states) | |
| attention_output = self.SelfAttention( | |
| normed_hidden_states, | |
| mask=attention_mask, | |
| position_bias=position_bias, | |
| layer_head_mask=layer_head_mask, | |
| past_key_value=past_key_value, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = hidden_states + self.dropout(attention_output[0]) | |
| # add attentions if we output them | |
| outputs = (hidden_states,) + attention_output[1:] | |
| return outputs | |
| class T5LayerCrossAttention(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| # @IDEA modified -> T5LayerNorm -> nn.LayerNorm | |
| # self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
| self.layer_norm = nn.LayerNorm( | |
| config.d_model, eps=config.layer_norm_epsilon) | |
| self.EncDecAttention = T5Attention( | |
| config, has_relative_attention_bias=False) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| def forward( | |
| self, | |
| hidden_states, | |
| key_value_states, | |
| attention_mask=None, | |
| position_bias=None, | |
| layer_head_mask=None, | |
| past_key_value=None, | |
| use_cache=False, | |
| query_length=None, | |
| output_attentions=False, | |
| ): | |
| normed_hidden_states = self.layer_norm(hidden_states) | |
| attention_output = self.EncDecAttention( | |
| normed_hidden_states, | |
| mask=attention_mask, | |
| key_value_states=key_value_states, | |
| position_bias=position_bias, | |
| layer_head_mask=layer_head_mask, | |
| past_key_value=past_key_value, | |
| use_cache=use_cache, | |
| query_length=query_length, | |
| output_attentions=output_attentions, | |
| ) | |
| layer_output = hidden_states + self.dropout(attention_output[0]) | |
| # add attentions if we output them | |
| outputs = (layer_output,) + attention_output[1:] | |
| return outputs | |
| class T5Block(nn.Module): | |
| def __init__(self, config, has_relative_attention_bias=False): | |
| super().__init__() | |
| self.is_decoder = config.is_decoder | |
| # @IDEA modified -> | |
| # self.layer = nn.ModuleList() | |
| # self.layer.append(T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) | |
| # if self.is_decoder: | |
| # self.layer.append(T5LayerCrossAttention(config)) | |
| # self.layer.append(T5LayerFF(config)) | |
| self.T5LayerSelfAttention = T5LayerSelfAttention( | |
| config, has_relative_attention_bias=has_relative_attention_bias) | |
| if self.is_decoder: | |
| self.T5LayerCrossAttention = T5LayerCrossAttention( | |
| config) | |
| self.T5LayerFF = T5LayerFF(config) | |
| def forward( | |
| self, | |
| hidden_states, | |
| attention_mask=None, | |
| position_bias=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| encoder_decoder_position_bias=None, | |
| layer_head_mask=None, | |
| cross_attn_layer_head_mask=None, | |
| past_key_value=None, | |
| use_cache=False, | |
| output_attentions=False, | |
| return_dict=True, | |
| ): | |
| if past_key_value is not None: | |
| assert self.is_decoder, "Only decoder can use `past_key_values`" | |
| expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 | |
| if len(past_key_value) != expected_num_past_key_values: | |
| raise ValueError( | |
| f"There should be {expected_num_past_key_values} past states. " | |
| f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" | |
| f"Got {len(past_key_value)} past key / value states" | |
| ) | |
| self_attn_past_key_value = past_key_value[:2] | |
| cross_attn_past_key_value = past_key_value[2:] | |
| else: | |
| self_attn_past_key_value, cross_attn_past_key_value = None, None | |
| # @IDEA modified -> self.layer[0] -> self.T5LayerSelfAttention | |
| self_attention_outputs = self.T5LayerSelfAttention( | |
| hidden_states, | |
| attention_mask=attention_mask, | |
| position_bias=position_bias, | |
| layer_head_mask=layer_head_mask, | |
| past_key_value=self_attn_past_key_value, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states, present_key_value_state = self_attention_outputs[:2] | |
| # Keep self-attention outputs and relative position weights | |
| attention_outputs = self_attention_outputs[2:] | |
| # clamp inf values to enable fp16 training | |
| if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
| clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
| hidden_states = torch.clamp( | |
| hidden_states, min=-clamp_value, max=clamp_value) | |
| do_cross_attention = self.is_decoder and encoder_hidden_states is not None | |
| if do_cross_attention: | |
| # the actual query length is unknown for cross attention | |
| # if using past key value states. Need to inject it here | |
| if present_key_value_state is not None: | |
| query_length = present_key_value_state[0].shape[2] | |
| else: | |
| query_length = None | |
| # @IDEA modified -> self.layer[1] -> self.T5LayerCrossAttention | |
| cross_attention_outputs = self.T5LayerCrossAttention( | |
| hidden_states, | |
| key_value_states=encoder_hidden_states, | |
| attention_mask=encoder_attention_mask, | |
| position_bias=encoder_decoder_position_bias, | |
| layer_head_mask=cross_attn_layer_head_mask, | |
| past_key_value=cross_attn_past_key_value, | |
| query_length=query_length, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| hidden_states = cross_attention_outputs[0] | |
| # clamp inf values to enable fp16 training | |
| if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
| clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
| hidden_states = torch.clamp( | |
| hidden_states, min=-clamp_value, max=clamp_value) | |
| # Combine self attn and cross attn key value states | |
| if present_key_value_state is not None: | |
| present_key_value_state = present_key_value_state + \ | |
| cross_attention_outputs[1] | |
| # Keep cross-attention outputs and relative position weights | |
| attention_outputs = attention_outputs + cross_attention_outputs[2:] | |
| # Apply Feed Forward layer | |
| # @IDEA modified -> self.layer[-1] -> self.T5LayerFF | |
| hidden_states = self.T5LayerFF(hidden_states) | |
| # clamp inf values to enable fp16 training | |
| if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): | |
| clamp_value = torch.finfo(hidden_states.dtype).max - 1000 | |
| hidden_states = torch.clamp( | |
| hidden_states, min=-clamp_value, max=clamp_value) | |
| outputs = (hidden_states,) | |
| if use_cache: | |
| outputs = outputs + (present_key_value_state,) + attention_outputs | |
| else: | |
| outputs = outputs + attention_outputs | |
| # hidden-states, present_key_value_states, (self-attention position bias), | |
| # (self-attention weights), (cross-attention position bias), (cross-attention weights) | |
| return outputs | |
| class T5PreTrainedModel(PreTrainedModel): | |
| """ | |
| An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained | |
| models. | |
| """ | |
| config_class = T5Config | |
| load_tf_weights = load_tf_weights_in_T5 | |
| base_model_prefix = "transformer" | |
| is_parallelizable = True | |
| supports_gradient_checkpointing = True | |
| def dummy_inputs(self): | |
| input_ids = torch.tensor(DUMMY_INPUTS) | |
| input_mask = torch.tensor(DUMMY_MASK) | |
| dummy_inputs = { | |
| "decoder_input_ids": input_ids, | |
| "input_ids": input_ids, | |
| "decoder_attention_mask": input_mask, | |
| } | |
| return dummy_inputs | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| factor = self.config.initializer_factor # Used for testing weights initialization | |
| if isinstance(module, T5LayerNorm): | |
| module.weight.data.fill_(factor * 1.0) | |
| elif isinstance(module, (T5Model, T5ForConditionalGeneration, T5EncoderModel)): | |
| # Mesh TensorFlow embeddings initialization | |
| # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d | |
| # /mesh_tensorflow/layers.py#L1624 | |
| # @IDEA modified -> module.shared.weight -> module.shared.word_embeddings.weight | |
| # module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) | |
| module.shared.word_embeddings.weight.data.normal_( | |
| mean=0.0, std=factor * 1.0) | |
| module.shared.position_embeddings.weight.data.normal_( | |
| mean=0.0, std=factor * 1.0) | |
| elif isinstance(module, T5DenseReluDense): | |
| # Mesh TensorFlow FF initialization | |
| # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow | |
| # /transformer/transformer_layers.py#L56 | |
| # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/ | |
| # mesh_tensorflow/layers.py#L89 | |
| module.wi.weight.data.normal_( | |
| mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
| if hasattr(module.wi, "bias") and module.wi.bias is not None: | |
| module.wi.bias.data.zero_() | |
| module.wo.weight.data.normal_( | |
| mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | |
| if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
| module.wo.bias.data.zero_() | |
| elif isinstance(module, T5DenseGeluDense): | |
| module.wi_0.weight.data.normal_( | |
| mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
| if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: | |
| module.wi_0.bias.data.zero_() | |
| module.wi_1.weight.data.normal_( | |
| mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) | |
| if hasattr(module.wi, "bias") and module.wi.bias is not None: | |
| module.wi.bias.data.zero_() | |
| module.wo.weight.data.normal_( | |
| mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) | |
| if hasattr(module.wo, "bias") and module.wo.bias is not None: | |
| module.wo.bias.data.zero_() | |
| elif isinstance(module, T5Attention): | |
| # Mesh TensorFlow attention initialization to avoid scaling before softmax | |
| # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d | |
| # /mesh_tensorflow/transformer/attention.py#L136 | |
| d_model = self.config.d_model | |
| key_value_proj_dim = self.config.d_kv | |
| n_heads = self.config.num_heads | |
| module.q.weight.data.normal_( | |
| mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) | |
| module.k.weight.data.normal_( | |
| mean=0.0, std=factor * (d_model ** -0.5)) | |
| module.v.weight.data.normal_( | |
| mean=0.0, std=factor * (d_model ** -0.5)) | |
| module.o.weight.data.normal_( | |
| mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) | |
| if module.has_relative_attention_bias: | |
| module.relative_attention_bias.weight.data.normal_( | |
| mean=0.0, std=factor * ((d_model) ** -0.5)) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if isinstance(module, (T5Attention, T5Stack)): | |
| module.gradient_checkpointing = value | |
| def _shift_right(self, input_ids): | |
| decoder_start_token_id = self.config.decoder_start_token_id | |
| pad_token_id = self.config.pad_token_id | |
| assert ( | |
| decoder_start_token_id is not None | |
| ), "self.model.config.decoder_start_token_id has to be defined. "\ | |
| "In T5 it is usually set to the pad_token_id. See T5 docs for more information" | |
| # shift inputs to the right | |
| if is_torch_fx_proxy(input_ids): | |
| # Item assignment is not supported natively for proxies. | |
| shifted_input_ids = torch.full( | |
| input_ids.shape[:-1] + (1,), decoder_start_token_id) | |
| shifted_input_ids = torch.cat( | |
| [shifted_input_ids, input_ids[..., :-1]], dim=-1) | |
| else: | |
| shifted_input_ids = input_ids.new_zeros(input_ids.shape) | |
| shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() | |
| shifted_input_ids[..., 0] = decoder_start_token_id | |
| assert pad_token_id is not None, "self.model.config.pad_token_id has to be defined." | |
| # replace possible -100 values in labels by `pad_token_id` | |
| shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) | |
| assert torch.all(shifted_input_ids >= 0).item( | |
| ), "Verify that `shifted_input_ids` has only positive values" | |
| return shifted_input_ids | |
| class T5Embeddings(nn.Module): | |
| """Construct the embeddings from word, position and token_type embeddings.""" | |
| def __init__(self, config): | |
| super().__init__() | |
| self.word_embeddings = nn.Embedding( | |
| config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) | |
| self.position_embeddings = nn.Embedding( | |
| config.max_position_embeddings, config.hidden_size) | |
| # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
| # any TensorFlow checkpoint file | |
| # In Megatron, layer-norm is applied after the 1st dropout. | |
| # self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| # position_ids (1, len position emb) is contiguous in memory and exported when serialized | |
| self.register_buffer("position_ids", torch.arange( | |
| config.max_position_embeddings).expand((1, -1))) | |
| self.position_embedding_type = getattr( | |
| config, "position_embedding_type", "absolute") | |
| def forward( | |
| self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0 | |
| ): | |
| if input_ids is not None: | |
| input_shape = input_ids.size() | |
| else: | |
| input_shape = inputs_embeds.size()[:-1] | |
| seq_length = input_shape[1] | |
| if position_ids is None: | |
| position_ids = self.position_ids[:, | |
| past_key_values_length: seq_length + past_key_values_length] | |
| if inputs_embeds is None: | |
| inputs_embeds = self.word_embeddings(input_ids) | |
| embeddings = inputs_embeds | |
| if self.position_embedding_type == "absolute": | |
| position_embeddings = self.position_embeddings(position_ids) | |
| embeddings += position_embeddings | |
| # Megatron BERT moves that layer norm after the drop-out (and to each layer). | |
| # embeddings = self.LayerNorm(embeddings) | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| class T5Stack(T5PreTrainedModel): | |
| def __init__(self, config, embed_tokens=None): | |
| super().__init__(config) | |
| self.embed_tokens = embed_tokens | |
| self.is_decoder = config.is_decoder | |
| # @IDEA modified -> has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers) | |
| # -> has_relative_attention_bias=False | |
| self.block = nn.ModuleList( | |
| [T5Block(config, has_relative_attention_bias=False) | |
| for _ in range(config.num_layers)] | |
| ) | |
| # @IDEA modified -> T5LayerNorm -> nn.LayerNorm | |
| # self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) | |
| self.final_layer_norm = nn.LayerNorm( | |
| config.d_model, eps=config.layer_norm_epsilon) | |
| self.dropout = nn.Dropout(config.dropout_rate) | |
| self.init_weights() | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| self.gradient_checkpointing = False | |
| def parallelize(self, device_map=None): | |
| # Check validity of device_map | |
| self.device_map = ( | |
| get_device_map(len(self.block), range( | |
| torch.cuda.device_count())) if device_map is None else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.block)) | |
| self.model_parallel = True | |
| self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + \ | |
| str(min(self.device_map.keys())) | |
| self.last_device = "cuda:" + str(max(self.device_map.keys())) | |
| # Load onto devices | |
| for k, v in self.device_map.items(): | |
| for layer in v: | |
| cuda_device = "cuda:" + str(k) | |
| self.block[layer] = self.block[layer].to(cuda_device) | |
| # Set embed_tokens to first layer | |
| self.embed_tokens = self.embed_tokens.to(self.first_device) | |
| self.embeddings = self.embeddings.to(self.first_device) | |
| # Set final layer norm to last device | |
| self.final_layer_norm = self.final_layer_norm.to(self.last_device) | |
| def deparallelize(self): | |
| self.model_parallel = False | |
| self.device_map = None | |
| self.first_device = "cpu" | |
| self.last_device = "cpu" | |
| for i in range(len(self.block)): | |
| self.block[i] = self.block[i].to("cpu") | |
| self.embed_tokens = self.embed_tokens.to("cpu") | |
| self.final_layer_norm = self.final_layer_norm.to("cpu") | |
| torch.cuda.empty_cache() | |
| def get_input_embeddings(self): | |
| return self.embed_tokens | |
| def set_input_embeddings(self, new_embeddings): | |
| self.embed_tokens = new_embeddings | |
| def forward( | |
| self, | |
| input_ids=None, | |
| position_ids=None, | |
| attention_mask=None, | |
| encoder_hidden_states=None, | |
| encoder_attention_mask=None, | |
| inputs_embeds=None, | |
| head_mask=None, | |
| cross_attn_head_mask=None, | |
| past_key_values=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| # Model parallel | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.first_device) | |
| self.embed_tokens = self.embed_tokens.to(self.first_device) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is not None and inputs_embeds is not None: | |
| err_msg_prefix = "decoder_" if self.is_decoder else "" | |
| raise ValueError( | |
| f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" | |
| ) | |
| elif input_ids is not None: | |
| input_shape = input_ids.size() | |
| input_ids = input_ids.view(-1, input_shape[-1]) | |
| elif inputs_embeds is not None: | |
| input_shape = inputs_embeds.size()[:-1] | |
| else: | |
| err_msg_prefix = "decoder_" if self.is_decoder else "" | |
| raise ValueError( | |
| f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") | |
| if inputs_embeds is None: | |
| assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings" | |
| # @IDEA modified -> self.embed_tokens(input_ids=input_ids) -> | |
| # self.embed_tokens(input_ids=input_ids,osition_ids=position_ids,) | |
| # inputs_embeds = self.embed_tokens(input_ids=input_ids) | |
| inputs_embeds = self.embed_tokens(input_ids=input_ids) | |
| batch_size, seq_length = input_shape | |
| # required mask seq length can be calculated via length of past | |
| mask_seq_length = past_key_values[0][0].shape[2] + \ | |
| seq_length if past_key_values is not None else seq_length | |
| if use_cache is True: | |
| assert self.is_decoder, f":obj:`use_cache` can only be set to `True` if {self} is used as a decoder" | |
| if attention_mask is None: | |
| attention_mask = torch.ones( | |
| batch_size, mask_seq_length).to(inputs_embeds.device) | |
| if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: | |
| encoder_seq_length = encoder_hidden_states.shape[1] | |
| encoder_attention_mask = torch.ones( | |
| batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long | |
| ) | |
| # initialize past_key_values with `None` if past does not exist | |
| if past_key_values is None: | |
| past_key_values = [None] * len(self.block) | |
| # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] | |
| # ourselves in which case we just need to make it broadcastable to all heads. | |
| extended_attention_mask = self.get_extended_attention_mask( | |
| attention_mask, input_shape, inputs_embeds.device) | |
| # If a 2D or 3D attention mask is provided for the cross-attention | |
| # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] | |
| if self.is_decoder and encoder_hidden_states is not None: | |
| encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() | |
| encoder_hidden_shape = ( | |
| encoder_batch_size, encoder_sequence_length) | |
| if encoder_attention_mask is None: | |
| encoder_attention_mask = torch.ones( | |
| encoder_hidden_shape, device=inputs_embeds.device) | |
| encoder_extended_attention_mask = self.invert_attention_mask( | |
| encoder_attention_mask) | |
| else: | |
| encoder_extended_attention_mask = None | |
| # Prepare head mask if needed | |
| head_mask = self.get_head_mask(head_mask, self.config.num_layers) | |
| cross_attn_head_mask = self.get_head_mask( | |
| cross_attn_head_mask, self.config.num_layers) | |
| present_key_value_states = () if use_cache else None | |
| all_hidden_states = () if output_hidden_states else None | |
| all_attentions = () if output_attentions else None | |
| all_cross_attentions = () if (output_attentions and self.is_decoder) else None | |
| position_bias = None | |
| encoder_decoder_position_bias = None | |
| hidden_states = self.dropout(inputs_embeds) | |
| for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): | |
| layer_head_mask = head_mask[i] | |
| cross_attn_layer_head_mask = cross_attn_head_mask[i] | |
| # Model parallel | |
| if self.model_parallel: | |
| torch.cuda.set_device(hidden_states.device) | |
| # Ensure that attention_mask is always on the same device as hidden_states | |
| if attention_mask is not None: | |
| attention_mask = attention_mask.to(hidden_states.device) | |
| if position_bias is not None: | |
| position_bias = position_bias.to(hidden_states.device) | |
| if encoder_hidden_states is not None: | |
| encoder_hidden_states = encoder_hidden_states.to( | |
| hidden_states.device) | |
| if encoder_extended_attention_mask is not None: | |
| encoder_extended_attention_mask = encoder_extended_attention_mask.to( | |
| hidden_states.device) | |
| if encoder_decoder_position_bias is not None: | |
| encoder_decoder_position_bias = encoder_decoder_position_bias.to( | |
| hidden_states.device) | |
| if layer_head_mask is not None: | |
| layer_head_mask = layer_head_mask.to(hidden_states.device) | |
| if cross_attn_layer_head_mask is not None: | |
| cross_attn_layer_head_mask = cross_attn_layer_head_mask.to( | |
| hidden_states.device) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warn( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return tuple(module(*inputs, use_cache, output_attentions)) | |
| return custom_forward | |
| layer_outputs = checkpoint( | |
| create_custom_forward(layer_module), | |
| hidden_states, | |
| extended_attention_mask, | |
| position_bias, | |
| encoder_hidden_states, | |
| encoder_extended_attention_mask, | |
| encoder_decoder_position_bias, | |
| layer_head_mask, | |
| cross_attn_layer_head_mask, | |
| None, # past_key_value is always None with gradient checkpointing | |
| ) | |
| else: | |
| layer_outputs = layer_module( | |
| hidden_states, | |
| attention_mask=extended_attention_mask, | |
| position_bias=position_bias, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_extended_attention_mask, | |
| encoder_decoder_position_bias=encoder_decoder_position_bias, | |
| layer_head_mask=layer_head_mask, | |
| cross_attn_layer_head_mask=cross_attn_layer_head_mask, | |
| past_key_value=past_key_value, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| # layer_outputs is a tuple with: | |
| # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), | |
| # (cross-attention position bias), (cross-attention weights) | |
| if use_cache is False: | |
| layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] | |
| hidden_states, present_key_value_state = layer_outputs[:2] | |
| # We share the position biases between the layers - the first layer store them | |
| # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), | |
| # (cross-attention position bias), (cross-attention weights) | |
| position_bias = layer_outputs[2] | |
| if self.is_decoder and encoder_hidden_states is not None: | |
| encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] | |
| # append next layer key value states | |
| if use_cache: | |
| present_key_value_states = present_key_value_states + \ | |
| (present_key_value_state,) | |
| if output_attentions: | |
| all_attentions = all_attentions + (layer_outputs[3],) | |
| if self.is_decoder: | |
| all_cross_attentions = all_cross_attentions + \ | |
| (layer_outputs[5],) | |
| # Model Parallel: If it's the last layer for that device, put things on the next device | |
| if self.model_parallel: | |
| for k, v in self.device_map.items(): | |
| if i == v[-1] and "cuda:" + str(k) != self.last_device: | |
| hidden_states = hidden_states.to("cuda:" + str(k + 1)) | |
| hidden_states = self.final_layer_norm(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| # Add last layer | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple( | |
| v | |
| for v in [ | |
| hidden_states, | |
| present_key_value_states, | |
| all_hidden_states, | |
| all_attentions, | |
| all_cross_attentions, | |
| ] | |
| if v is not None | |
| ) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=present_key_value_states, | |
| hidden_states=all_hidden_states, | |
| attentions=all_attentions, | |
| cross_attentions=all_cross_attentions, | |
| ) | |
| T5_START_DOCSTRING = r""" | |
| The T5 model was proposed in `Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer | |
| <https://arxiv.org/abs/1910.10683>`__ by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, | |
| Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a text-to-text | |
| denoising generative setting. | |
| This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic | |
| methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, | |
| pruning heads etc.) | |
| This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__ | |
| subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to | |
| general usage and behavior. | |
| Parameters: | |
| config (:class:`~transformers.T5Config`): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model | |
| weights. | |
| """ | |
| T5_INPUTS_DOCSTRING = """ | |
| Args: | |
| input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you | |
| should be able to pad the inputs on both the right and the left. | |
| Indices can be obtained using :class:`~transformers.T5Tokenizer`. See | |
| :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
| detail. | |
| `What are input IDs? <../glossary.html#input-ids>`__ | |
| To know more on how to prepare :obj:`input_ids` for pretraining take a look a `T5 Training | |
| <./T5.html#training>`__. | |
| attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| decoder_input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, target_sequence_length)`, `optional`): | |
| Indices of decoder input sequence tokens in the vocabulary. | |
| Indices can be obtained using :class:`~transformers.T5Tokenizer`. See | |
| :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
| details. | |
| `What are decoder input IDs? <../glossary.html#decoder-input-ids>`__ | |
| T5 uses the :obj:`pad_token_id` as the starting token for :obj:`decoder_input_ids` generation. If | |
| :obj:`past_key_values` is used, optionally only the last :obj:`decoder_input_ids` have to be input (see | |
| :obj:`past_key_values`). | |
| To know more on how to prepare :obj:`decoder_input_ids` for pretraining take a look at `T5 Training | |
| <./T5.html#training>`__. | |
| decoder_attention_mask (:obj:`torch.BoolTensor` of shape | |
| :obj:`(batch_size, target_sequence_length)`, `optional`): | |
| Default behavior: generate a tensor that ignores pad tokens in :obj:`decoder_input_ids`. Causal mask will | |
| also be used by default. | |
| head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
| Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in ``[0, | |
| 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| decoder_head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or | |
| :obj:`(num_layers, num_heads)`, `optional`): | |
| Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in ``[0, | |
| 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| cross_attn_head_mask (:obj:`torch.Tensor` of shape :obj:`(num_heads,)` or | |
| :obj:`(num_layers, num_heads)`, `optional`): | |
| Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in | |
| ``[0, 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| encoder_outputs (:obj:`tuple(tuple(torch.FloatTensor)`, `optional`): | |
| Tuple consists of (:obj:`last_hidden_state`, :obj:`optional`: `hidden_states`, :obj:`optional`: | |
| `attentions`) :obj:`last_hidden_state` of shape :obj:`(batch_size, sequence_length, hidden_size)` is a | |
| sequence of hidden states at the output of the last layer of the encoder. Used in the cross-attention of | |
| the decoder. | |
| past_key_values (:obj:`tuple(tuple(torch.FloatTensor))` of length :obj:`config.n_layers` with each tuple having | |
| 4 tensors of shape :obj:`(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): | |
| Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. | |
| If :obj:`past_key_values` are used, the user can optionally input only the last :obj:`decoder_input_ids` | |
| (those that don't have their past key value states given to this model) of shape :obj:`(batch_size, 1)` | |
| instead of all :obj:`decoder_input_ids` of shape :obj:`(batch_size, sequence_length)`. | |
| inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
| Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
| vectors than the model's internal embedding lookup matrix. | |
| decoder_inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, target_sequence_length, hidden_size) | |
| `, `optional`): | |
| Optionally, instead of passing :obj:`decoder_input_ids` you can choose to directly pass an embedded | |
| representation. If :obj:`past_key_values` is used, optionally only the last :obj:`decoder_inputs_embeds` | |
| have to be input (see :obj:`past_key_values`). This is useful if you want more control over how to convert | |
| :obj:`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. | |
| If :obj:`decoder_input_ids` and :obj:`decoder_inputs_embeds` are both unset, :obj:`decoder_inputs_embeds` | |
| takes the value of :obj:`inputs_embeds`. | |
| use_cache (:obj:`bool`, `optional`): | |
| If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up | |
| decoding (see :obj:`past_key_values`). | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
| tensors for more detail. | |
| output_hidden_states (:obj:`bool`, `optional`): | |
| Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
| more detail. | |
| return_dict (:obj:`bool`, `optional`): | |
| Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
| """ | |
| T5_ENCODER_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`): | |
| Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you | |
| should be able to pad the inputs on both the right and the left. | |
| Indices can be obtained using :class:`~transformers.T5Tokenizer`. See | |
| :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for | |
| detail. | |
| To know more on how to prepare :obj:`input_ids` for pretraining take a look a `T5 Training | |
| <./T5.html#training>`__. | |
| attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| `What are attention masks? <../glossary.html#attention-mask>`__ | |
| head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`): | |
| Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation. | |
| This is useful if you want more control over how to convert :obj:`input_ids` indices into associated | |
| vectors than the model's internal embedding lookup matrix. | |
| output_attentions (:obj:`bool`, `optional`): | |
| Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned | |
| tensors for more detail. | |
| output_hidden_states (:obj:`bool`, `optional`): | |
| Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for | |
| more detail. | |
| return_dict (:obj:`bool`, `optional`): | |
| Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple. | |
| """ | |
| # Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
| __HEAD_MASK_WARNING_MSG = """ | |
| The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, | |
| `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. | |
| If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, | |
| num_heads)`. | |
| """ | |
| class T5LMHead(nn.Module): | |
| """Masked LM head for T5 | |
| Arguments: | |
| mpu_vocab_size: model parallel size of vocabulary. | |
| hidden_size: hidden size | |
| init_method: init method for weight initialization | |
| layernorm_epsilon: tolerance for layer norm divisions | |
| parallel_output: wether output logits being distributed or not. | |
| """ | |
| def __init__(self, config): | |
| super(T5LMHead, self).__init__() | |
| self.bias = torch.nn.Parameter(torch.zeros(config.vocab_size)) | |
| def forward(self, hidden_states, word_embeddings_weight): | |
| output = torch.nn.functional.linear(hidden_states, | |
| word_embeddings_weight, | |
| bias=self.bias) | |
| return output | |
| class T5Model(T5PreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [ | |
| r"encoder\.embed_tokens\.weight", | |
| r"decoder\.embed_tokens\.weight", | |
| ] | |
| _keys_to_ignore_on_load_unexpected = [ | |
| r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight", | |
| ] | |
| def __init__(self, config: T5Config): | |
| super().__init__(config) | |
| # @IDEA modified -> nn.Embedding -> T5Embeddings | |
| # self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
| self.shared = T5Embeddings(config) | |
| encoder_config = copy.deepcopy(config) | |
| encoder_config.is_decoder = False | |
| encoder_config.use_cache = False | |
| encoder_config.is_encoder_decoder = False | |
| self.encoder = T5Stack(encoder_config, self.shared) | |
| decoder_config = copy.deepcopy(config) | |
| decoder_config.is_decoder = True | |
| decoder_config.is_encoder_decoder = False | |
| decoder_config.num_layers = config.num_decoder_layers | |
| self.decoder = T5Stack(decoder_config, self.shared) | |
| self.init_weights() | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| def parallelize(self, device_map=None): | |
| self.device_map = ( | |
| get_device_map(len(self.encoder.block), | |
| range(torch.cuda.device_count())) | |
| if device_map is None | |
| else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.encoder.block)) | |
| self.encoder.parallelize(self.device_map) | |
| self.decoder.parallelize(self.device_map) | |
| self.model_parallel = True | |
| def deparallelize(self): | |
| self.encoder.deparallelize() | |
| self.decoder.deparallelize() | |
| self.encoder = self.encoder.to("cpu") | |
| self.decoder = self.decoder.to("cpu") | |
| self.model_parallel = False | |
| self.device_map = None | |
| torch.cuda.empty_cache() | |
| def get_input_embeddings(self): | |
| return self.shared | |
| def set_input_embeddings(self, new_embeddings): | |
| self.shared = new_embeddings | |
| self.encoder.set_input_embeddings(new_embeddings) | |
| self.decoder.set_input_embeddings(new_embeddings) | |
| def get_encoder(self): | |
| return self.encoder | |
| def get_decoder(self): | |
| return self.decoder | |
| def _prune_heads(self, heads_to_prune): | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
| class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| decoder_input_ids=None, | |
| decoder_attention_mask=None, | |
| head_mask=None, | |
| decoder_head_mask=None, | |
| cross_attn_head_mask=None, | |
| encoder_outputs=None, | |
| past_key_values=None, | |
| inputs_embeds=None, | |
| decoder_inputs_embeds=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| Returns: | |
| Example:: | |
| >>> from transformers import T5Tokenizer, T5Model | |
| >>> tokenizer = T5Tokenizer.from_pretrained('T5-small') | |
| >>> model = T5Model.from_pretrained('T5-small') | |
| >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", | |
| return_tensors="pt").input_ids # Batch size 1 | |
| >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 | |
| >>> # forward pass | |
| >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) | |
| >>> last_hidden_states = outputs.last_hidden_state | |
| """ | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
| if head_mask is not None and decoder_head_mask is None: | |
| if self.config.num_layers == self.config.num_decoder_layers: | |
| warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | |
| decoder_head_mask = head_mask | |
| # Encode if needed (training, first prediction pass) | |
| if encoder_outputs is None: | |
| encoder_outputs = self.encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| head_mask=head_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
| encoder_outputs = BaseModelOutput( | |
| last_hidden_state=encoder_outputs[0], | |
| hidden_states=encoder_outputs[1] if len( | |
| encoder_outputs) > 1 else None, | |
| attentions=encoder_outputs[2] if len( | |
| encoder_outputs) > 2 else None, | |
| ) | |
| hidden_states = encoder_outputs[0] | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.decoder.first_device) | |
| # Set device for model parallelism | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.decoder.first_device) | |
| hidden_states = hidden_states.to(self.decoder.first_device) | |
| if decoder_input_ids is not None: | |
| decoder_input_ids = decoder_input_ids.to( | |
| self.decoder.first_device) | |
| if attention_mask is not None: | |
| attention_mask = attention_mask.to(self.decoder.first_device) | |
| if decoder_attention_mask is not None: | |
| decoder_attention_mask = decoder_attention_mask.to( | |
| self.decoder.first_device) | |
| # Decode | |
| decoder_outputs = self.decoder( | |
| input_ids=decoder_input_ids, | |
| attention_mask=decoder_attention_mask, | |
| inputs_embeds=decoder_inputs_embeds, | |
| past_key_values=past_key_values, | |
| encoder_hidden_states=hidden_states, | |
| encoder_attention_mask=attention_mask, | |
| head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| if not return_dict: | |
| return decoder_outputs + encoder_outputs | |
| return Seq2SeqModelOutput( | |
| last_hidden_state=decoder_outputs.last_hidden_state, | |
| past_key_values=decoder_outputs.past_key_values, | |
| decoder_hidden_states=decoder_outputs.hidden_states, | |
| decoder_attentions=decoder_outputs.attentions, | |
| cross_attentions=decoder_outputs.cross_attentions, | |
| encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
| encoder_hidden_states=encoder_outputs.hidden_states, | |
| encoder_attentions=encoder_outputs.attentions, | |
| ) | |
| class T5ForConditionalGeneration(T5PreTrainedModel): | |
| _keys_to_ignore_on_load_missing = [ | |
| r"encoder\.embed_tokens\.weight", | |
| r"decoder\.embed_tokens\.weight", | |
| r"lm_head\.weight", | |
| ] | |
| _keys_to_ignore_on_load_unexpected = [ | |
| r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight", | |
| ] | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.model_dim = config.d_model | |
| # @IDEA modified -> nn.Embedding -> T5Embeddings | |
| # self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
| self.shared = T5Embeddings(config) | |
| encoder_config = copy.deepcopy(config) | |
| encoder_config.is_decoder = False | |
| encoder_config.use_cache = False | |
| encoder_config.is_encoder_decoder = False | |
| self.encoder = T5Stack(encoder_config, self.shared) | |
| decoder_config = copy.deepcopy(config) | |
| decoder_config.is_decoder = True | |
| decoder_config.is_encoder_decoder = False | |
| decoder_config.num_layers = config.num_decoder_layers | |
| self.decoder = T5Stack(decoder_config, self.shared) | |
| # @IDEA modified -> add self.lm_head_bias | |
| self.lm_head_bias = torch.nn.Parameter(torch.zeros(config.vocab_size)) | |
| self.init_weights() | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| def parallelize(self, device_map=None): | |
| self.device_map = ( | |
| get_device_map(len(self.encoder.block), | |
| range(torch.cuda.device_count())) | |
| if device_map is None | |
| else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.encoder.block)) | |
| self.encoder.parallelize(self.device_map) | |
| self.decoder.parallelize(self.device_map) | |
| self.lm_head = self.lm_head.to(self.decoder.first_device) | |
| self.model_parallel = True | |
| def deparallelize(self): | |
| self.encoder.deparallelize() | |
| self.decoder.deparallelize() | |
| self.encoder = self.encoder.to("cpu") | |
| self.decoder = self.decoder.to("cpu") | |
| self.lm_head = self.lm_head.to("cpu") | |
| self.model_parallel = False | |
| self.device_map = None | |
| torch.cuda.empty_cache() | |
| def get_input_embeddings(self): | |
| return self.shared | |
| def set_input_embeddings(self, new_embeddings): | |
| self.shared = new_embeddings | |
| self.encoder.set_input_embeddings(new_embeddings) | |
| self.decoder.set_input_embeddings(new_embeddings) | |
| def set_output_embeddings(self, new_embeddings): | |
| self.lm_head = new_embeddings | |
| def get_output_embeddings(self): | |
| return self.lm_head_bias | |
| def get_encoder(self): | |
| return self.encoder | |
| def get_decoder(self): | |
| return self.decoder | |
| def generate(self, input_ids=None, max_length=512): | |
| input_ids = torch.tensor(input_ids) | |
| if len(input_ids.shape) < 2: | |
| input_ids = input_ids.unsqueeze(0) | |
| decode_input_id = [21128] # [BOS]的token_id为21128 | |
| for i in range(max_length): | |
| tensor_decode_input_id = torch.tensor([decode_input_id]) | |
| forword_output = self.forward(input_ids=input_ids, | |
| decoder_input_ids=tensor_decode_input_id) | |
| logits = forword_output.logits | |
| logits = torch.nn.functional.softmax( | |
| logits, dim=-1).cpu().detach().numpy()[0] | |
| last_output_id = int(np.random.choice( | |
| logits.shape[1], p=logits[-1])) | |
| if last_output_id == 21129: # [EOS]的token_id为21129 | |
| break | |
| else: | |
| decode_input_id.append(last_output_id) | |
| return decode_input_id | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| decoder_input_ids=None, | |
| decoder_attention_mask=None, | |
| head_mask=None, | |
| decoder_head_mask=None, | |
| cross_attn_head_mask=None, | |
| encoder_outputs=None, | |
| past_key_values=None, | |
| inputs_embeds=None, | |
| decoder_inputs_embeds=None, | |
| labels=None, | |
| use_cache=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): | |
| Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ..., | |
| config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for | |
| labels in ``[0, ..., config.vocab_size]`` | |
| Returns: | |
| Examples:: | |
| >>> from transformers import T5Tokenizer, T5ForConditionalGeneration | |
| >>> tokenizer = T5Tokenizer.from_pretrained('T5-small') | |
| >>> model = T5ForConditionalGeneration.from_pretrained('T5-small') | |
| >>> # training | |
| >>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids | |
| >>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2>', return_tensors='pt').input_ids | |
| >>> outputs = model(input_ids=input_ids, labels=labels) | |
| >>> loss = outputs.loss | |
| >>> logits = outputs.logits | |
| >>> # inference | |
| >>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you", | |
| return_tensors="pt").input_ids # Batch size 1 | |
| >>> outputs = model.generate(input_ids) | |
| >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) | |
| >>> # studies have shown that owning a dog is good for you. | |
| """ | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask | |
| if head_mask is not None and decoder_head_mask is None: | |
| if self.config.num_layers == self.config.num_decoder_layers: | |
| warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) | |
| decoder_head_mask = head_mask | |
| # Encode if needed (training, first prediction pass) | |
| if encoder_outputs is None: | |
| # Convert encoder inputs in embeddings if needed | |
| encoder_outputs = self.encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| head_mask=head_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
| encoder_outputs = BaseModelOutput( | |
| last_hidden_state=encoder_outputs[0], | |
| hidden_states=encoder_outputs[1] if len( | |
| encoder_outputs) > 1 else None, | |
| attentions=encoder_outputs[2] if len( | |
| encoder_outputs) > 2 else None, | |
| ) | |
| hidden_states = encoder_outputs[0] | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.decoder.first_device) | |
| if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: | |
| # get decoder inputs from shifting lm labels to the right | |
| decoder_input_ids = self._shift_right(labels) | |
| # Set device for model parallelism | |
| if self.model_parallel: | |
| torch.cuda.set_device(self.decoder.first_device) | |
| hidden_states = hidden_states.to(self.decoder.first_device) | |
| if decoder_input_ids is not None: | |
| decoder_input_ids = decoder_input_ids.to( | |
| self.decoder.first_device) | |
| if attention_mask is not None: | |
| attention_mask = attention_mask.to(self.decoder.first_device) | |
| if decoder_attention_mask is not None: | |
| decoder_attention_mask = decoder_attention_mask.to( | |
| self.decoder.first_device) | |
| # Decode | |
| decoder_outputs = self.decoder( | |
| input_ids=decoder_input_ids, | |
| attention_mask=decoder_attention_mask, | |
| inputs_embeds=decoder_inputs_embeds, | |
| past_key_values=past_key_values, | |
| encoder_hidden_states=hidden_states, | |
| encoder_attention_mask=attention_mask, | |
| head_mask=decoder_head_mask, | |
| cross_attn_head_mask=cross_attn_head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = decoder_outputs.last_hidden_state | |
| # Set device for model parallelism | |
| # if self.model_parallel: | |
| # torch.cuda.set_device(self.encoder.first_device) | |
| # self.lm_head = self.lm_head.to(self.encoder.first_device) | |
| # sequence_output = sequence_output.to(self.lm_head.weight.device) | |
| # if self.config.tie_word_embeddings: | |
| # # Rescale output before projecting on vocab | |
| # # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/ | |
| # mesh_tensorflow/transformer/transformer.py#L586 | |
| # sequence_output = sequence_output * (self.model_dim ** -0.5) | |
| lm_logits = torch.nn.functional.linear( | |
| sequence_output, self.shared.word_embeddings.weight, bias=self.lm_head_bias) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss(ignore_index=-100) | |
| loss = loss_fct( | |
| lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) | |
| # @IDEA modified(thom): Add z_loss https://github.com/tensorflow/mesh/blob/ | |
| # fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 | |
| if not return_dict: | |
| output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs | |
| return ((loss,) + output) if loss is not None else output | |
| return Seq2SeqLMOutput( | |
| loss=loss, | |
| logits=lm_logits, | |
| past_key_values=decoder_outputs.past_key_values, | |
| decoder_hidden_states=decoder_outputs.hidden_states, | |
| decoder_attentions=decoder_outputs.attentions, | |
| cross_attentions=decoder_outputs.cross_attentions, | |
| encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
| encoder_hidden_states=encoder_outputs.hidden_states, | |
| encoder_attentions=encoder_outputs.attentions, | |
| ) | |
| def prepare_inputs_for_generation( | |
| self, | |
| input_ids, | |
| past=None, | |
| attention_mask=None, | |
| head_mask=None, | |
| decoder_head_mask=None, | |
| cross_attn_head_mask=None, | |
| use_cache=None, | |
| encoder_outputs=None, | |
| **kwargs | |
| ): | |
| # cut decoder_input_ids if past is used | |
| if past is not None: | |
| input_ids = input_ids[:, -1:] | |
| return { | |
| "decoder_input_ids": input_ids, | |
| "past_key_values": past, | |
| "encoder_outputs": encoder_outputs, | |
| "attention_mask": attention_mask, | |
| "head_mask": head_mask, | |
| "decoder_head_mask": decoder_head_mask, | |
| "cross_attn_head_mask": cross_attn_head_mask, | |
| "use_cache": use_cache, | |
| } | |
| def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): | |
| return self._shift_right(labels) | |
| def _reorder_cache(self, past, beam_idx): | |
| # if decoder past is not included in output | |
| # speedy decoding is disabled and no need to reorder | |
| if past is None: | |
| logger.warning( | |
| "You might want to consider setting `use_cache=True` to speed up decoding") | |
| return past | |
| reordered_decoder_past = () | |
| for layer_past_states in past: | |
| # get the correct batch idx from layer past batch dim | |
| # batch dim of `past` is at 2nd position | |
| reordered_layer_past_states = () | |
| for layer_past_state in layer_past_states: | |
| # need to set correct `past` for each of the four key / value states | |
| reordered_layer_past_states = reordered_layer_past_states + ( | |
| layer_past_state.index_select( | |
| 0, beam_idx.to(layer_past_state.device)), | |
| ) | |
| assert reordered_layer_past_states[0].shape == layer_past_states[0].shape | |
| assert len(reordered_layer_past_states) == len(layer_past_states) | |
| reordered_decoder_past = reordered_decoder_past + \ | |
| (reordered_layer_past_states,) | |
| return reordered_decoder_past | |
| class T5EncoderModel(T5PreTrainedModel): | |
| authorized_missing_keys = [ | |
| r"encoder\.embed_tokens\.weight", | |
| ] | |
| def __init__(self, config: T5Config): | |
| super().__init__(config) | |
| # @IDEA modified -> nn.Embedding -> T5Embeddings | |
| # self.shared = nn.Embedding(config.vocab_size, config.d_model) | |
| self.shared = T5Embeddings(config) | |
| encoder_config = copy.deepcopy(config) | |
| encoder_config.use_cache = False | |
| encoder_config.is_encoder_decoder = False | |
| self.encoder = T5Stack(encoder_config, self.shared) | |
| self.init_weights() | |
| # Model parallel | |
| self.model_parallel = False | |
| self.device_map = None | |
| def parallelize(self, device_map=None): | |
| self.device_map = ( | |
| get_device_map(len(self.encoder.block), | |
| range(torch.cuda.device_count())) | |
| if device_map is None | |
| else device_map | |
| ) | |
| assert_device_map(self.device_map, len(self.encoder.block)) | |
| self.encoder.parallelize(self.device_map) | |
| self.model_parallel = True | |
| def deparallelize(self): | |
| self.encoder.deparallelize() | |
| self.encoder = self.encoder.to("cpu") | |
| self.model_parallel = False | |
| self.device_map = None | |
| torch.cuda.empty_cache() | |
| def get_input_embeddings(self): | |
| return self.shared | |
| def set_input_embeddings(self, new_embeddings): | |
| self.shared = new_embeddings | |
| self.encoder.set_input_embeddings(new_embeddings) | |
| def get_encoder(self): | |
| return self.encoder | |
| def _prune_heads(self, heads_to_prune): | |
| """ | |
| Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base | |
| class PreTrainedModel | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def forward( | |
| self, | |
| input_ids=None, | |
| attention_mask=None, | |
| head_mask=None, | |
| inputs_embeds=None, | |
| output_attentions=None, | |
| output_hidden_states=None, | |
| return_dict=None, | |
| ): | |
| r""" | |
| Returns: | |
| Example:: | |
| >>> from transformers import T5Tokenizer, T5EncoderModel | |
| >>> tokenizer = T5Tokenizer.from_pretrained('T5-small') | |
| >>> model = T5EncoderModel.from_pretrained('T5-small') | |
| >>> input_ids = tokenizer("Studies have been shown that owning a dog is good for you", | |
| return_tensors="pt").input_ids # Batch size 1 | |
| >>> outputs = model(input_ids=input_ids) | |
| >>> last_hidden_states = outputs.last_hidden_state | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| encoder_outputs = self.encoder( | |
| input_ids=input_ids, | |
| attention_mask=attention_mask, | |
| inputs_embeds=inputs_embeds, | |
| head_mask=head_mask, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| return encoder_outputs | |