Spaces:
Runtime error
Runtime error
| # coding: utf-8 | |
| # Copyright 2019 Sinovation Ventures AI Institute | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # | |
| # This file is partially derived from the code at | |
| # https://github.com/huggingface/transformers/tree/master/transformers | |
| # | |
| # Original copyright notice: | |
| # | |
| # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
| # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch ZEN2 model classes.""" | |
| from __future__ import absolute_import, division, print_function, unicode_literals | |
| import copy | |
| import logging | |
| import math | |
| import os | |
| import torch | |
| from torch import nn | |
| from torch.nn import CrossEntropyLoss | |
| from dataclasses import dataclass | |
| from typing import Optional | |
| from transformers import PreTrainedModel | |
| from fengshen.models.zen2.configuration_zen2 import ZenConfig | |
| logger = logging.getLogger(__name__) | |
| PRETRAINED_MODEL_ARCHIVE_MAP = { | |
| 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin", | |
| 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin", | |
| 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin", | |
| 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin", | |
| 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin", | |
| 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin", | |
| 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin", | |
| 'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin", | |
| 'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin", | |
| 'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin", | |
| 'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin", | |
| 'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin", | |
| 'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin", | |
| 'IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese/resolve/main/pytorch_model.bin', | |
| 'IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese/resolve/main/pytorch_model.bin', | |
| } | |
| PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json", | |
| 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-config.json", | |
| 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-config.json", | |
| 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-config.json", | |
| 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-config.json", | |
| 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-config.json", | |
| 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-config.json", | |
| 'bert-base-german-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-config.json", | |
| 'bert-large-uncased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-config.json", | |
| 'bert-large-cased-whole-word-masking': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-config.json", | |
| 'bert-large-uncased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-config.json", | |
| 'bert-large-cased-whole-word-masking-finetuned-squad': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-config.json", | |
| 'bert-base-cased-finetuned-mrpc': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-config.json", | |
| 'IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese/resolve/main/config.json', | |
| 'IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese/resolve/main/config.json', | |
| } | |
| BERT_CONFIG_NAME = 'bert_config.json' | |
| TF_WEIGHTS_NAME = 'model.ckpt' | |
| def prune_linear_layer(layer, index, dim=0): | |
| """ Prune a linear layer (a model parameters) to keep only entries in index. | |
| Return the pruned layer as a new layer with requires_grad=True. | |
| Used to remove heads. | |
| """ | |
| index = index.to(layer.weight.device) | |
| W = layer.weight.index_select(dim, index).clone().detach() | |
| if layer.bias is not None: | |
| if dim == 1: | |
| b = layer.bias.clone().detach() | |
| else: | |
| b = layer.bias[index].clone().detach() | |
| new_size = list(layer.weight.size()) | |
| new_size[dim] = len(index) | |
| new_layer = nn.Linear(new_size[1], new_size[0], bias=layer.bias is not None).to(layer.weight.device) | |
| new_layer.weight.requires_grad = False | |
| new_layer.weight.copy_(W.contiguous()) | |
| new_layer.weight.requires_grad = True | |
| if layer.bias is not None: | |
| new_layer.bias.requires_grad = False | |
| new_layer.bias.copy_(b.contiguous()) | |
| new_layer.bias.requires_grad = True | |
| return new_layer | |
| def load_tf_weights_in_bert(model, tf_checkpoint_path): | |
| """ Load tf checkpoints in a pytorch model | |
| """ | |
| try: | |
| import re | |
| import numpy as np | |
| import tensorflow as tf | |
| except ImportError: | |
| print("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " | |
| "https://www.tensorflow.org/install/ for installation instructions.") | |
| raise | |
| tf_path = os.path.abspath(tf_checkpoint_path) | |
| print("Converting TensorFlow checkpoint from {}".format(tf_path)) | |
| # Load weights from TF model | |
| init_vars = tf.train.list_variables(tf_path) | |
| names = [] | |
| arrays = [] | |
| for name, shape in init_vars: | |
| print("Loading TF weight {} with shape {}".format(name, shape)) | |
| array = tf.train.load_variable(tf_path, name) | |
| names.append(name) | |
| arrays.append(array) | |
| for name, array in zip(names, arrays): | |
| name = name.split('/') | |
| # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v | |
| # which are not required for using pretrained model | |
| if any(n in ["adam_v", "adam_m", "global_step"] for n in name): | |
| print("Skipping {}".format("/".join(name))) | |
| continue | |
| pointer = model | |
| for m_name in name: | |
| if re.fullmatch(r'[A-Za-z]+_\d+', m_name): | |
| name_lists = re.split(r'_(\d+)', m_name) | |
| else: | |
| name_lists = [m_name] | |
| if name_lists[0] == 'kernel' or name_lists[0] == 'gamma': | |
| pointer = getattr(pointer, 'weight') | |
| elif name_lists[0] == 'output_bias' or name_lists[0] == 'beta': | |
| pointer = getattr(pointer, 'bias') | |
| elif name_lists[0] == 'output_weights': | |
| pointer = getattr(pointer, 'weight') | |
| elif name_lists[0] == 'squad': | |
| pointer = getattr(pointer, 'classifier') | |
| else: | |
| try: | |
| pointer = getattr(pointer, name_lists[0]) | |
| except AttributeError: | |
| print("Skipping {}".format("/".join(name))) | |
| continue | |
| if len(name_lists) >= 2: | |
| num = int(name_lists[1]) | |
| pointer = pointer[num] | |
| if m_name[-11:] == '_embeddings': | |
| pointer = getattr(pointer, 'weight') | |
| elif m_name == 'kernel': | |
| array = np.transpose(array) | |
| try: | |
| assert pointer.shape == array.shape | |
| except AssertionError as e: | |
| e.args += (pointer.shape, array.shape) | |
| raise | |
| print("Initialize PyTorch weight {}".format(name)) | |
| pointer.data = torch.from_numpy(array) | |
| return model | |
| def gelu(x): | |
| """Implementation of the gelu activation function. | |
| For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): | |
| 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) | |
| Also see https://arxiv.org/abs/1606.08415 | |
| """ | |
| return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) | |
| def swish(x): | |
| return x * torch.sigmoid(x) | |
| ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} | |
| try: | |
| # from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm | |
| from torch.nn import LayerNorm as BertLayerNorm | |
| except ImportError: | |
| logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .") | |
| class BertLayerNorm(nn.Module): | |
| def __init__(self, hidden_size, eps=1e-12): | |
| """Construct a layernorm module in the TF style (epsilon inside the square root). | |
| """ | |
| super(BertLayerNorm, self).__init__() | |
| self.weight = nn.Parameter(torch.ones(hidden_size)) | |
| self.bias = nn.Parameter(torch.zeros(hidden_size)) | |
| self.variance_epsilon = eps | |
| def forward(self, x): | |
| u = x.mean(-1, keepdim=True) | |
| s = (x - u).pow(2).mean(-1, keepdim=True) | |
| x = (x - u) / torch.sqrt(s + self.variance_epsilon) | |
| return self.weight * x + self.bias | |
| class BertEmbeddings(nn.Module): | |
| """Construct the embeddings from word, position and token_type embeddings. | |
| """ | |
| def __init__(self, config): | |
| super(BertEmbeddings, self).__init__() | |
| self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) | |
| self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
| # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
| # any TensorFlow checkpoint file | |
| self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, input_ids, token_type_ids=None): | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros_like(input_ids) | |
| words_embeddings = self.word_embeddings(input_ids) | |
| token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
| embeddings = words_embeddings + token_type_embeddings | |
| embeddings = self.LayerNorm(embeddings) | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| class BertWordEmbeddings(nn.Module): | |
| """Construct the embeddings from ngram, position and token_type embeddings. | |
| """ | |
| def __init__(self, config): | |
| super(BertWordEmbeddings, self).__init__() | |
| self.word_embeddings = nn.Embedding(config.word_size, config.hidden_size, padding_idx=0) | |
| self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) | |
| # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load | |
| # any TensorFlow checkpoint file | |
| self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, input_ids, token_type_ids=None): | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros_like(input_ids) | |
| words_embeddings = self.word_embeddings(input_ids) | |
| token_type_embeddings = self.token_type_embeddings(token_type_ids) | |
| embeddings = words_embeddings + token_type_embeddings | |
| embeddings = self.LayerNorm(embeddings) | |
| embeddings = self.dropout(embeddings) | |
| return embeddings | |
| class RelativeSinusoidalPositionalEmbedding(nn.Module): | |
| """This module produces sinusoidal positional embeddings of any length. | |
| Padding symbols are ignored. | |
| """ | |
| def __init__(self, embedding_dim, padding_idx, init_size=1568): | |
| """ | |
| :param embedding_dim: 每个位置的dimension | |
| :param padding_idx: | |
| :param init_size: | |
| """ | |
| super().__init__() | |
| self.embedding_dim = embedding_dim | |
| self.padding_idx = padding_idx | |
| assert init_size % 2 == 0 | |
| weights = self.get_embedding( | |
| init_size+1, | |
| embedding_dim, | |
| padding_idx, | |
| ) | |
| self.register_buffer('weights', weights) | |
| self.register_buffer('_float_tensor', torch.FloatTensor(1)) | |
| def get_embedding(self, num_embeddings, embedding_dim, padding_idx=None): | |
| """Build sinusoidal embeddings. | |
| This matches the implementation in tensor2tensor, but differs slightly | |
| from the description in Section 3.5 of "Attention Is All You Need". | |
| """ | |
| half_dim = embedding_dim // 2 | |
| emb = math.log(10000) / (half_dim - 1) | |
| emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) | |
| emb = torch.arange(-num_embeddings//2, num_embeddings//2, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) | |
| emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) | |
| if embedding_dim % 2 == 1: | |
| # zero pad | |
| emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) | |
| if padding_idx is not None: | |
| emb[padding_idx, :] = 0 | |
| self.origin_shift = num_embeddings//2 + 1 | |
| return emb | |
| def forward(self, input): | |
| """Input is expected to be of size [bsz x seqlen]. | |
| """ | |
| bsz, _, _, seq_len = input.size() | |
| max_pos = self.padding_idx + seq_len | |
| if max_pos > self.origin_shift: | |
| # recompute/expand embeddings if needed | |
| weights = self.get_embedding( | |
| max_pos*2, | |
| self.embedding_dim, | |
| self.padding_idx, | |
| ) | |
| weights = weights.to(self._float_tensor) | |
| del self.weights | |
| self.origin_shift = weights.size(0)//2 | |
| self.register_buffer('weights', weights) | |
| positions = torch.arange(-seq_len, seq_len).to(input.device).long() + self.origin_shift # 2*seq_len | |
| embed = self.weights.index_select(0, positions.long()).detach() | |
| return embed | |
| class BertSelfAttention(nn.Module): | |
| def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
| super(BertSelfAttention, self).__init__() | |
| if config.hidden_size % config.num_attention_heads != 0: | |
| raise ValueError( | |
| "The hidden size (%d) is not a multiple of the number of attention " | |
| "heads (%d)" % (config.hidden_size, config.num_attention_heads)) | |
| self.output_attentions = output_attentions | |
| self.keep_multihead_output = keep_multihead_output | |
| self.multihead_output = None | |
| self.num_attention_heads = config.num_attention_heads | |
| self.attention_head_size = int(config.hidden_size / config.num_attention_heads) | |
| self.all_head_size = self.num_attention_heads * self.attention_head_size | |
| self.query = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.key = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.value = nn.Linear(config.hidden_size, self.all_head_size) | |
| self.dropout = nn.Dropout(config.attention_probs_dropout_prob) | |
| self.softmax = nn.Softmax(dim=-1) | |
| self.position_embedding = RelativeSinusoidalPositionalEmbedding(self.attention_head_size, 0, 1200) | |
| self.r_r_bias = nn.Parameter( | |
| nn.init.xavier_normal_(torch.zeros(self.num_attention_heads, self.attention_head_size))) | |
| self.r_w_bias = nn.Parameter( | |
| nn.init.xavier_normal_(torch.zeros(self.num_attention_heads, self.attention_head_size))) | |
| def transpose_for_scores(self, x): | |
| new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) | |
| x = x.view(*new_x_shape) | |
| return x.permute(0, 2, 1, 3) | |
| def forward(self, hidden_states, attention_mask, head_mask=None): | |
| position_embedding = self.position_embedding(attention_mask) | |
| mixed_query_layer = self.query(hidden_states) | |
| mixed_key_layer = self.key(hidden_states) | |
| mixed_value_layer = self.value(hidden_states) | |
| query_layer = self.transpose_for_scores(mixed_query_layer) | |
| key_layer = self.transpose_for_scores(mixed_key_layer) | |
| value_layer = self.transpose_for_scores(mixed_value_layer) | |
| rw_head_q = query_layer + self.r_r_bias[:, None] | |
| AC = torch.einsum('bnqd,bnkd->bnqk', [rw_head_q.float(), key_layer.float()]) # b x n x l x d, n是head | |
| D_ = torch.einsum('nd,ld->nl', self.r_w_bias.float(), position_embedding.float())[None, :, | |
| None] # head x 2max_len, 每个head对位置的bias | |
| B_ = torch.einsum('bnqd,ld->bnql', query_layer.float(), | |
| position_embedding.float()) # bsz x head x max_len x 2max_len,每个query对每个shift的偏移 | |
| BD = B_ + D_ # bsz x head x max_len x 2max_len, 要转换为bsz x head x max_len x max_len | |
| BD = self._shift(BD) | |
| attention_scores = AC + BD | |
| attention_scores = attention_scores / math.sqrt(self.attention_head_size) | |
| # Apply the attention mask is (precomputed for all layers in BertModel forward() function) | |
| attention_scores = attention_scores + attention_mask | |
| # Normalize the attention scores to probabilities. | |
| attention_probs = self.softmax(attention_scores) | |
| # This is actually dropping out entire tokens to attend to, which might | |
| # seem a bit unusual, but is taken from the original Transformer paper. | |
| attention_probs = self.dropout(attention_probs) | |
| # Mask heads if we want to | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| context_layer = torch.matmul(attention_probs.type_as(value_layer), value_layer) | |
| if self.keep_multihead_output: | |
| self.multihead_output = context_layer | |
| self.multihead_output.retain_grad() | |
| context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
| new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) | |
| context_layer = context_layer.view(*new_context_layer_shape) | |
| if self.output_attentions: | |
| return attention_probs, context_layer | |
| return context_layer | |
| def _shift(self, BD): | |
| """ | |
| 类似 | |
| -3 -2 -1 0 1 2 | |
| -3 -2 -1 0 1 2 | |
| -3 -2 -1 0 1 2 | |
| 转换为 | |
| 0 1 2 | |
| -1 0 1 | |
| -2 -1 0 | |
| :param BD: batch_size x n_head x max_len x 2max_len | |
| :return: batch_size x n_head x max_len x max_len | |
| """ | |
| bsz, n_head, max_len, _ = BD.size() | |
| zero_pad = BD.new_zeros(bsz, n_head, max_len, 1) | |
| BD = torch.cat([BD, zero_pad], dim=-1).view(bsz, n_head, -1, max_len) # bsz x n_head x (2max_len+1) x max_len | |
| BD = BD[:, :, :-1].view(bsz, n_head, max_len, -1) # bsz x n_head x 2max_len x max_len | |
| BD = BD[:, :, :, max_len:] | |
| return BD | |
| class BertSelfOutput(nn.Module): | |
| def __init__(self, config): | |
| super(BertSelfOutput, self).__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states, input_tensor): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
| return hidden_states | |
| class BertAttention(nn.Module): | |
| def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
| super(BertAttention, self).__init__() | |
| self.output_attentions = output_attentions | |
| self.self = BertSelfAttention(config, output_attentions=output_attentions, | |
| keep_multihead_output=keep_multihead_output) | |
| self.output = BertSelfOutput(config) | |
| def prune_heads(self, heads): | |
| if len(heads) == 0: | |
| return | |
| mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size) | |
| for head in heads: | |
| mask[head] = 0 | |
| mask = mask.view(-1).contiguous().eq(1) | |
| index = torch.arange(len(mask))[mask].long() | |
| # Prune linear layers | |
| self.self.query = prune_linear_layer(self.self.query, index) | |
| self.self.key = prune_linear_layer(self.self.key, index) | |
| self.self.value = prune_linear_layer(self.self.value, index) | |
| self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) | |
| # Update hyper params | |
| self.self.num_attention_heads = self.self.num_attention_heads - len(heads) | |
| self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads | |
| def forward(self, input_tensor, attention_mask, head_mask=None): | |
| self_output = self.self(input_tensor, attention_mask, head_mask) | |
| if self.output_attentions: | |
| attentions, self_output = self_output | |
| attention_output = self.output(self_output, input_tensor) | |
| if self.output_attentions: | |
| return attentions, attention_output | |
| return attention_output | |
| class BertIntermediate(nn.Module): | |
| def __init__(self, config): | |
| super(BertIntermediate, self).__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.intermediate_size) | |
| # if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): | |
| if isinstance(config.hidden_act, str): | |
| self.intermediate_act_fn = ACT2FN[config.hidden_act] | |
| else: | |
| self.intermediate_act_fn = config.hidden_act | |
| def forward(self, hidden_states): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.intermediate_act_fn(hidden_states) | |
| return hidden_states | |
| class BertOutput(nn.Module): | |
| def __init__(self, config): | |
| super(BertOutput, self).__init__() | |
| self.dense = nn.Linear(config.intermediate_size, config.hidden_size) | |
| self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| def forward(self, hidden_states, input_tensor): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.dropout(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states + input_tensor) | |
| return hidden_states | |
| class BertLayer(nn.Module): | |
| def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
| super(BertLayer, self).__init__() | |
| self.output_attentions = output_attentions | |
| self.attention = BertAttention(config, output_attentions=output_attentions, | |
| keep_multihead_output=keep_multihead_output) | |
| self.intermediate = BertIntermediate(config) | |
| self.output = BertOutput(config) | |
| def forward(self, hidden_states, attention_mask, head_mask=None): | |
| attention_output = self.attention(hidden_states, attention_mask, head_mask) | |
| if self.output_attentions: | |
| attentions, attention_output = attention_output | |
| intermediate_output = self.intermediate(attention_output) | |
| layer_output = self.output(intermediate_output, attention_output) | |
| if self.output_attentions: | |
| return attentions, layer_output | |
| return layer_output | |
| class ZenEncoder(nn.Module): | |
| def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
| super(ZenEncoder, self).__init__() | |
| self.output_attentions = output_attentions | |
| layer = BertLayer(config, output_attentions=output_attentions, | |
| keep_multihead_output=keep_multihead_output) | |
| self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) | |
| self.word_layers = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_word_layers)]) | |
| self.num_hidden_word_layers = config.num_hidden_word_layers | |
| def forward(self, hidden_states, ngram_hidden_states, ngram_position_matrix, attention_mask, | |
| ngram_attention_mask, | |
| output_all_encoded_layers=True, head_mask=None): | |
| # Need to check what is the attention masking doing here | |
| all_encoder_layers = [] | |
| all_attentions = [] | |
| num_hidden_ngram_layers = self.num_hidden_word_layers | |
| for i, layer_module in enumerate(self.layer): | |
| hidden_states = layer_module(hidden_states, attention_mask, head_mask[i]) | |
| if i < num_hidden_ngram_layers: | |
| ngram_hidden_states = self.word_layers[i](ngram_hidden_states, ngram_attention_mask, head_mask[i]) | |
| if self.output_attentions: | |
| ngram_attentions, ngram_hidden_states = ngram_hidden_states | |
| all_attentions.append(ngram_attentions) | |
| if self.output_attentions: | |
| attentions, hidden_states = hidden_states | |
| all_attentions.append(attentions) | |
| hidden_states += torch.bmm(ngram_position_matrix.float(), ngram_hidden_states.float()) | |
| if output_all_encoded_layers: | |
| all_encoder_layers.append(hidden_states) | |
| if not output_all_encoded_layers: | |
| all_encoder_layers.append(hidden_states) | |
| if self.output_attentions: | |
| return all_attentions, all_encoder_layers | |
| return all_encoder_layers | |
| class BertPooler(nn.Module): | |
| def __init__(self, config): | |
| super(BertPooler, self).__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| self.activation = nn.Tanh() | |
| def forward(self, hidden_states): | |
| # We "pool" the model by simply taking the hidden state corresponding | |
| # to the first token. | |
| first_token_tensor = hidden_states[:, 0] | |
| pooled_output = self.dense(first_token_tensor) | |
| pooled_output = self.activation(pooled_output) | |
| return pooled_output | |
| class BertPredictionHeadTransform(nn.Module): | |
| def __init__(self, config): | |
| super(BertPredictionHeadTransform, self).__init__() | |
| self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
| # if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): | |
| if isinstance(config.hidden_act, str): | |
| self.transform_act_fn = ACT2FN[config.hidden_act] | |
| else: | |
| self.transform_act_fn = config.hidden_act | |
| self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
| def forward(self, hidden_states): | |
| hidden_states = self.dense(hidden_states) | |
| hidden_states = self.transform_act_fn(hidden_states) | |
| hidden_states = self.LayerNorm(hidden_states) | |
| return hidden_states | |
| class BertLMPredictionHead(nn.Module): | |
| def __init__(self, config, bert_model_embedding_weights): | |
| super(BertLMPredictionHead, self).__init__() | |
| self.transform = BertPredictionHeadTransform(config) | |
| # The output weights are the same as the input embeddings, but there is | |
| # an output-only bias for each token. | |
| self.decoder = nn.Linear(bert_model_embedding_weights.size(1), | |
| bert_model_embedding_weights.size(0), | |
| bias=False) | |
| self.decoder.weight = bert_model_embedding_weights | |
| self.bias = nn.Parameter(torch.zeros(bert_model_embedding_weights.size(0))) | |
| def forward(self, hidden_states): | |
| hidden_states = self.transform(hidden_states) | |
| hidden_states = self.decoder(hidden_states) + self.bias | |
| return hidden_states | |
| class ZenOnlyMLMHead(nn.Module): | |
| def __init__(self, config, bert_model_embedding_weights): | |
| super(ZenOnlyMLMHead, self).__init__() | |
| self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) | |
| def forward(self, sequence_output): | |
| prediction_scores = self.predictions(sequence_output) | |
| return prediction_scores | |
| class ZenOnlyNSPHead(nn.Module): | |
| def __init__(self, config): | |
| super(ZenOnlyNSPHead, self).__init__() | |
| self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
| def forward(self, pooled_output): | |
| seq_relationship_score = self.seq_relationship(pooled_output) | |
| return seq_relationship_score | |
| class ZenPreTrainingHeads(nn.Module): | |
| def __init__(self, config, bert_model_embedding_weights): | |
| super(ZenPreTrainingHeads, self).__init__() | |
| self.predictions = BertLMPredictionHead(config, bert_model_embedding_weights) | |
| self.seq_relationship = nn.Linear(config.hidden_size, 2) | |
| def forward(self, sequence_output, pooled_output): | |
| prediction_scores = self.predictions(sequence_output) | |
| seq_relationship_score = self.seq_relationship(pooled_output) | |
| return prediction_scores, seq_relationship_score | |
| class ZenPreTrainedModel(PreTrainedModel): | |
| """ An abstract class to handle weights initialization and | |
| a simple interface for dowloading and loading pretrained models. | |
| """ | |
| config_class = ZenConfig | |
| supports_gradient_checkpointing = True | |
| _keys_to_ignore_on_load_missing = [r"position_ids"] | |
| def _init_weights(self, module): | |
| """Initialize the weights""" | |
| if isinstance(module, nn.Linear): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_( | |
| mean=0.0, std=self.config.initializer_range) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_( | |
| mean=0.0, std=self.config.initializer_range) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| elif isinstance(module, nn.LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| class ZenModel(ZenPreTrainedModel): | |
| """ZEN model ("BERT-based Chinese (Z) text encoder Enhanced by N-gram representations"). | |
| Params: | |
| `config`: a BertConfig class instance with the configuration to build a new model | |
| `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
| `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
| This can be used to compute head importance metrics. Default: False | |
| Inputs: | |
| `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
| with the word token indices in the vocabulary | |
| `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
| types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
| a `sentence B` token (see BERT paper for more details). | |
| `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
| selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
| input sequence length in the current batch. It's the mask that we typically use for attention when | |
| a batch has varying length sentences. | |
| `output_all_encoded_layers`: boolean which controls the content of the `encoded_layers` output as described below. Default: `True`. | |
| `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
| It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
| `input_ngram_ids`: input_ids of ngrams. | |
| `ngram_token_type_ids`: token_type_ids of ngrams. | |
| `ngram_attention_mask`: attention_mask of ngrams. | |
| `ngram_position_matrix`: position matrix of ngrams. | |
| Outputs: Tuple of (encoded_layers, pooled_output) | |
| `encoded_layers`: controled by `output_all_encoded_layers` argument: | |
| - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end | |
| of each attention block (i.e. 12 full sequences for BERT-base, 24 for BERT-large), each | |
| encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, hidden_size], | |
| - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding | |
| to the last attention block of shape [batch_size, sequence_length, hidden_size], | |
| `pooled_output`: a torch.FloatTensor of size [batch_size, hidden_size] which is the output of a | |
| classifier pretrained on top of the hidden state associated to the first character of the | |
| input (`CLS`) to train on the Next-Sentence task (see BERT's paper). | |
| """ | |
| def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
| super(ZenModel, self).__init__(config) | |
| self.output_attentions = output_attentions | |
| self.embeddings = BertEmbeddings(config) | |
| self.word_embeddings = BertWordEmbeddings(config) | |
| self.encoder = ZenEncoder(config, output_attentions=output_attentions, | |
| keep_multihead_output=keep_multihead_output) | |
| self.pooler = BertPooler(config) | |
| self.init_weights() | |
| def prune_heads(self, heads_to_prune): | |
| """ Prunes heads of the model. | |
| heads_to_prune: dict of {layer_num: list of heads to prune in this layer} | |
| """ | |
| for layer, heads in heads_to_prune.items(): | |
| self.encoder.layer[layer].attention.prune_heads(heads) | |
| def get_multihead_outputs(self): | |
| """ Gather all multi-head outputs. | |
| Return: list (layers) of multihead module outputs with gradients | |
| """ | |
| return [layer.attention.self.multihead_output for layer in self.encoder.layer] | |
| def forward(self, input_ids, | |
| input_ngram_ids, | |
| ngram_position_matrix, | |
| token_type_ids=None, | |
| ngram_token_type_ids=None, | |
| attention_mask=None, | |
| ngram_attention_mask=None, | |
| output_all_encoded_layers=True, | |
| head_mask=None): | |
| if attention_mask is None: | |
| attention_mask = torch.ones_like(input_ids) | |
| if token_type_ids is None: | |
| token_type_ids = torch.zeros_like(input_ids) | |
| if ngram_attention_mask is None: | |
| ngram_attention_mask = torch.ones_like(input_ngram_ids) | |
| if ngram_token_type_ids is None: | |
| ngram_token_type_ids = torch.zeros_like(input_ngram_ids) | |
| # We create a 3D attention mask from a 2D tensor mask. | |
| # Sizes are [batch_size, 1, 1, to_seq_length] | |
| # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] | |
| # this attention mask is more simple than the triangular masking of causal attention | |
| # used in OpenAI GPT, we just need to prepare the broadcast dimension here. | |
| extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) | |
| extended_ngram_attention_mask = ngram_attention_mask.unsqueeze(1).unsqueeze(2) | |
| # Since attention_mask is 1.0 for positions we want to attend and 0.0 for | |
| # masked positions, this operation will create a tensor which is 0.0 for | |
| # positions we want to attend and -10000.0 for masked positions. | |
| # Since we are adding it to the raw scores before the softmax, this is | |
| # effectively the same as removing these entirely. | |
| extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility | |
| extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 | |
| extended_ngram_attention_mask = extended_ngram_attention_mask.to(dtype=next(self.parameters()).dtype) | |
| extended_ngram_attention_mask = (1.0 - extended_ngram_attention_mask) * -10000.0 | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape bsz x n_heads x N x N | |
| # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] | |
| # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] | |
| if head_mask is not None: | |
| if head_mask.dim() == 1: | |
| head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1) | |
| head_mask = head_mask.expand_as(self.config.num_hidden_layers, -1, -1, -1, -1) | |
| elif head_mask.dim() == 2: | |
| head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze( | |
| -1) # We can specify head_mask for each layer | |
| head_mask = head_mask.to( | |
| dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility | |
| else: | |
| head_mask = [None] * self.config.num_hidden_layers | |
| embedding_output = self.embeddings(input_ids, token_type_ids) | |
| ngram_embedding_output = self.word_embeddings(input_ngram_ids, ngram_token_type_ids) | |
| encoded_layers = self.encoder(embedding_output, | |
| ngram_embedding_output, | |
| ngram_position_matrix, | |
| extended_attention_mask, | |
| extended_ngram_attention_mask, | |
| output_all_encoded_layers=output_all_encoded_layers, | |
| head_mask=head_mask) | |
| if self.output_attentions: | |
| all_attentions, encoded_layers = encoded_layers | |
| sequence_output = encoded_layers[-1] | |
| pooled_output = self.pooler(sequence_output) | |
| if not output_all_encoded_layers: | |
| encoded_layers = encoded_layers[-1] | |
| if self.output_attentions: | |
| return all_attentions, encoded_layers, pooled_output | |
| return encoded_layers, pooled_output | |
| class ZenForPreTraining(ZenPreTrainedModel): | |
| """ZEN model with pre-training heads. | |
| This module comprises the ZEN model followed by the two pre-training heads: | |
| - the masked language modeling head, and | |
| - the next sentence classification head. | |
| Params: | |
| `config`: a BertConfig class instance with the configuration to build a new model | |
| `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
| `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
| This can be used to compute head importance metrics. Default: False | |
| Inputs: | |
| `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
| with the word token indices in the vocabulary | |
| `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
| types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
| a `sentence B` token (see BERT paper for more details). | |
| `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
| selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
| input sequence length in the current batch. It's the mask that we typically use for attention when | |
| a batch has varying length sentences. | |
| `masked_lm_labels`: optional masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] | |
| with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss | |
| is only computed for the labels set in [0, ..., vocab_size] | |
| `next_sentence_label`: optional next sentence classification loss: torch.LongTensor of shape [batch_size] | |
| with indices selected in [0, 1]. | |
| 0 => next sentence is the continuation, 1 => next sentence is a random sentence. | |
| `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
| It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
| `input_ngram_ids`: input_ids of ngrams. | |
| `ngram_token_type_ids`: token_type_ids of ngrams. | |
| `ngram_attention_mask`: attention_mask of ngrams. | |
| `ngram_position_matrix`: position matrix of ngrams. | |
| Outputs: | |
| if `masked_lm_labels` and `next_sentence_label` are not `None`: | |
| Outputs the total_loss which is the sum of the masked language modeling loss and the next | |
| sentence classification loss. | |
| if `masked_lm_labels` or `next_sentence_label` is `None`: | |
| Outputs a tuple comprising | |
| - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and | |
| - the next sentence classification logits of shape [batch_size, 2]. | |
| """ | |
| def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
| super(ZenForPreTraining, self).__init__(config) | |
| self.output_attentions = output_attentions | |
| self.bert = ZenModel(config, output_attentions=output_attentions, | |
| keep_multihead_output=keep_multihead_output) | |
| self.cls = ZenPreTrainingHeads(config, self.bert.embeddings.word_embeddings.weight) | |
| self.init_weights() | |
| def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, | |
| ngram_token_type_ids=None, | |
| attention_mask=None, | |
| ngram_attention_mask=None, | |
| masked_lm_labels=None, | |
| next_sentence_label=None, head_mask=None): | |
| outputs = self.bert(input_ids, | |
| input_ngram_ids, | |
| ngram_position_matrix, | |
| token_type_ids, | |
| ngram_token_type_ids, | |
| attention_mask, | |
| ngram_attention_mask, | |
| output_all_encoded_layers=False, head_mask=head_mask) | |
| if self.output_attentions: | |
| all_attentions, sequence_output, pooled_output = outputs | |
| else: | |
| sequence_output, pooled_output = outputs | |
| prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output) | |
| if masked_lm_labels is not None and next_sentence_label is not None: | |
| loss_fct = CrossEntropyLoss(ignore_index=-1) | |
| masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) | |
| next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
| total_loss = masked_lm_loss + next_sentence_loss | |
| return total_loss | |
| elif self.output_attentions: | |
| return all_attentions, prediction_scores, seq_relationship_score | |
| return prediction_scores, seq_relationship_score | |
| class ZenForMaskedLM(ZenPreTrainedModel): | |
| """ZEN model with the masked language modeling head. | |
| This module comprises the ZEN model followed by the masked language modeling head. | |
| Params: | |
| `config`: a BertConfig class instance with the configuration to build a new model | |
| `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
| `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
| This can be used to compute head importance metrics. Default: False | |
| Inputs: | |
| `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
| with the word token indices in the vocabulary | |
| `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
| types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
| a `sentence B` token (see BERT paper for more details). | |
| `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
| selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
| input sequence length in the current batch. It's the mask that we typically use for attention when | |
| a batch has varying length sentences. | |
| `masked_lm_labels`: masked language modeling labels: torch.LongTensor of shape [batch_size, sequence_length] | |
| with indices selected in [-1, 0, ..., vocab_size]. All labels set to -1 are ignored (masked), the loss | |
| is only computed for the labels set in [0, ..., vocab_size] | |
| `head_mask`: an optional torch.LongTensor of shape [num_heads] with indices | |
| selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
| input sequence length in the current batch. It's the mask that we typically use for attention when | |
| a batch has varying length sentences. | |
| `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
| It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
| `input_ngram_ids`: input_ids of ngrams. | |
| `ngram_token_type_ids`: token_type_ids of ngrams. | |
| `ngram_attention_mask`: attention_mask of ngrams. | |
| `ngram_position_matrix`: position matrix of ngrams. | |
| Outputs: | |
| if `masked_lm_labels` is not `None`: | |
| Outputs the masked language modeling loss. | |
| if `masked_lm_labels` is `None`: | |
| Outputs the masked language modeling logits of shape [batch_size, sequence_length, vocab_size]. | |
| """ | |
| def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
| super(ZenForMaskedLM, self).__init__(config) | |
| self.output_attentions = output_attentions | |
| self.bert = ZenModel(config, output_attentions=output_attentions, | |
| keep_multihead_output=keep_multihead_output) | |
| self.cls = ZenOnlyMLMHead(config, self.bert.embeddings.word_embeddings.weight) | |
| self.init_weights() | |
| def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, masked_lm_labels=None, head_mask=None): | |
| outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask, | |
| output_all_encoded_layers=False, | |
| head_mask=head_mask) | |
| if self.output_attentions: | |
| all_attentions, sequence_output, _ = outputs | |
| else: | |
| sequence_output, _ = outputs | |
| prediction_scores = self.cls(sequence_output) | |
| if masked_lm_labels is not None: | |
| loss_fct = CrossEntropyLoss(ignore_index=-1) | |
| masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1)) | |
| return masked_lm_loss | |
| elif self.output_attentions: | |
| return all_attentions, prediction_scores | |
| return prediction_scores | |
| class ZenForNextSentencePrediction(ZenPreTrainedModel): | |
| """ZEN model with next sentence prediction head. | |
| This module comprises the ZEN model followed by the next sentence classification head. | |
| Params: | |
| `config`: a BertConfig class instance with the configuration to build a new model | |
| `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
| `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
| This can be used to compute head importance metrics. Default: False | |
| Inputs: | |
| `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
| with the word token indices in the vocabulary | |
| `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
| types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
| a `sentence B` token (see BERT paper for more details). | |
| `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
| selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
| input sequence length in the current batch. It's the mask that we typically use for attention when | |
| a batch has varying length sentences. | |
| `next_sentence_label`: next sentence classification loss: torch.LongTensor of shape [batch_size] | |
| with indices selected in [0, 1]. | |
| 0 => next sentence is the continuation, 1 => next sentence is a random sentence. | |
| `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
| It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
| `input_ngram_ids`: input_ids of ngrams. | |
| `ngram_token_type_ids`: token_type_ids of ngrams. | |
| `ngram_attention_mask`: attention_mask of ngrams. | |
| `ngram_position_matrix`: position matrix of ngrams. | |
| Outputs: | |
| if `next_sentence_label` is not `None`: | |
| Outputs the total_loss which is the sum of the masked language modeling loss and the next | |
| sentence classification loss. | |
| if `next_sentence_label` is `None`: | |
| Outputs the next sentence classification logits of shape [batch_size, 2]. | |
| """ | |
| def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
| super(ZenForNextSentencePrediction, self).__init__(config) | |
| self.output_attentions = output_attentions | |
| self.bert = ZenModel(config, output_attentions=output_attentions, | |
| keep_multihead_output=keep_multihead_output) | |
| self.cls = ZenOnlyNSPHead(config) | |
| self.init_weights() | |
| def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, next_sentence_label=None, head_mask=None): | |
| outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, attention_mask, | |
| output_all_encoded_layers=False, | |
| head_mask=head_mask) | |
| if self.output_attentions: | |
| all_attentions, _, pooled_output = outputs | |
| else: | |
| _, pooled_output = outputs | |
| seq_relationship_score = self.cls(pooled_output) | |
| if next_sentence_label is not None: | |
| loss_fct = CrossEntropyLoss(ignore_index=-1) | |
| next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1)) | |
| return next_sentence_loss | |
| elif self.output_attentions: | |
| return all_attentions, seq_relationship_score | |
| return seq_relationship_score | |
| class ZenForSequenceClassification(ZenPreTrainedModel): | |
| """ZEN model for classification. | |
| This module is composed of the ZEN model with a linear layer on top of | |
| the pooled output. | |
| Params: | |
| `config`: a BertConfig class instance with the configuration to build a new model | |
| `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
| `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
| This can be used to compute head importance metrics. Default: False | |
| `num_labels`: the number of classes for the classifier. Default = 2. | |
| Inputs: | |
| `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
| with the word token indices in the vocabulary. Items in the batch should begin with the special "CLS" token. (see the tokens preprocessing logic in the scripts | |
| `extract_features.py`, `run_classifier.py` and `run_squad.py`) | |
| `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
| types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
| a `sentence B` token (see BERT paper for more details). | |
| `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
| selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
| input sequence length in the current batch. It's the mask that we typically use for attention when | |
| a batch has varying length sentences. | |
| `labels`: labels for the classification output: torch.LongTensor of shape [batch_size] | |
| with indices selected in [0, ..., num_labels]. | |
| `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
| It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
| `input_ngram_ids`: input_ids of ngrams. | |
| `ngram_token_type_ids`: token_type_ids of ngrams. | |
| `ngram_attention_mask`: attention_mask of ngrams. | |
| `ngram_position_matrix`: position matrix of ngrams. | |
| Outputs: | |
| if `labels` is not `None`: | |
| Outputs the CrossEntropy classification loss of the output with the labels. | |
| if `labels` is `None`: | |
| Outputs the classification logits of shape [batch_size, num_labels]. | |
| """ | |
| def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False): | |
| super(ZenForSequenceClassification, self).__init__(config) | |
| self.output_attentions = output_attentions | |
| self.num_labels = config.num_labels | |
| self.bert = ZenModel(config, output_attentions=output_attentions, | |
| keep_multihead_output=keep_multihead_output) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.Linear(config.hidden_size, self.num_labels) | |
| self.init_weights() | |
| def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, labels=None, head_mask=None): | |
| outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, | |
| attention_mask=attention_mask, | |
| output_all_encoded_layers=False, | |
| head_mask=head_mask) | |
| if self.output_attentions: | |
| all_attentions, _, pooled_output = outputs | |
| else: | |
| _, pooled_output = outputs | |
| pooled_output = self.dropout(pooled_output) | |
| logits = self.classifier(pooled_output) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
| return loss, logits | |
| elif self.output_attentions: | |
| return all_attentions, logits | |
| return loss, logits | |
| class TokenClassifierOutput: | |
| """ | |
| Base class for outputs of token classification models. | |
| """ | |
| loss: Optional[torch.FloatTensor] = None | |
| logits: torch.FloatTensor = None | |
| class ZenForTokenClassification(ZenPreTrainedModel): | |
| """ZEN model for token-level classification. | |
| This module is composed of the ZEN model with a linear layer on top of | |
| the full hidden state of the last layer. | |
| Params: | |
| `config`: a BertConfig class instance with the configuration to build a new model | |
| `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
| `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
| This can be used to compute head importance metrics. Default: False | |
| `num_labels`: the number of classes for the classifier. Default = 2. | |
| Inputs: | |
| `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
| with the word token indices in the vocabulary | |
| `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
| types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
| a `sentence B` token (see BERT paper for more details). | |
| `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
| selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
| input sequence length in the current batch. It's the mask that we typically use for attention when | |
| a batch has varying length sentences. | |
| `labels`: labels for the classification output: torch.LongTensor of shape [batch_size, sequence_length] | |
| with indices selected in [0, ..., num_labels]. | |
| `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
| It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
| `input_ngram_ids`: input_ids of ngrams. | |
| `ngram_token_type_ids`: token_type_ids of ngrams. | |
| `ngram_attention_mask`: attention_mask of ngrams. | |
| `ngram_position_matrix`: position matrix of ngrams. | |
| Outputs: | |
| if `labels` is not `None`: | |
| Outputs the CrossEntropy classification loss of the output with the labels. | |
| if `labels` is `None`: | |
| Outputs the classification logits of shape [batch_size, sequence_length, num_labels]. | |
| """ | |
| def __init__(self, config, num_labels=2, output_attentions=False, keep_multihead_output=False): | |
| super(ZenForTokenClassification, self).__init__(config) | |
| self.output_attentions = output_attentions | |
| self.num_labels = config.num_labels | |
| self.bert = ZenModel(config, output_attentions=output_attentions, | |
| keep_multihead_output=keep_multihead_output) | |
| self.dropout = nn.Dropout(config.hidden_dropout_prob) | |
| self.classifier = nn.Linear(config.hidden_size, self.num_labels) | |
| self.init_weights() | |
| def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None, | |
| input_ngram_ids=None, ngram_position_matrix=None, head_mask=None, b_use_valid_filter=False): | |
| outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, | |
| attention_mask=attention_mask, output_all_encoded_layers=False, head_mask=head_mask) | |
| if self.output_attentions: | |
| all_attentions, sequence_output, _ = outputs | |
| else: | |
| sequence_output, _ = outputs | |
| # if b_use_valid_filter: | |
| # batch_size, max_len, feat_dim = sequence_output.shape | |
| # valid_output = torch.zeros(batch_size, max_len, feat_dim, dtype=sequence_output.dtype, | |
| # device=input_ids.device) | |
| # for i in range(batch_size): | |
| # temp = sequence_output[i][valid_ids[i] == 1] | |
| # valid_output[i][:temp.size(0)] = temp | |
| # else: | |
| # valid_output = sequence_output | |
| valid_output = sequence_output | |
| sequence_output = self.dropout(valid_output) | |
| logits = self.classifier(sequence_output) | |
| loss = None | |
| if labels is not None: | |
| loss_fct = CrossEntropyLoss(ignore_index=0) | |
| # Only keep active parts of the loss | |
| # attention_mask_label = None | |
| # if attention_mask_label is not None: | |
| if attention_mask is not None: | |
| # active_loss = attention_mask_label.view(-1) == 1 | |
| active_loss = attention_mask.view(-1) == 1 | |
| active_logits = logits.view(-1, self.num_labels)[active_loss] | |
| active_labels = labels.view(-1)[active_loss] | |
| loss = loss_fct(active_logits, active_labels) | |
| else: | |
| loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
| return TokenClassifierOutput(loss, logits) | |
| else: | |
| return TokenClassifierOutput(loss, logits) | |
| class ZenForQuestionAnswering(ZenPreTrainedModel): | |
| """BERT model for Question Answering (span extraction). | |
| This module is composed of the BERT model with a linear layer on top of | |
| the sequence output that computes start_logits and end_logits | |
| Params: | |
| `config`: a BertConfig class instance with the configuration to build a new model | |
| `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False | |
| `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient. | |
| This can be used to compute head importance metrics. Default: False | |
| Inputs: | |
| `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length] | |
| with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts | |
| `extract_features.py`, `run_classifier.py` and `run_squad.py`) | |
| `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token | |
| types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to | |
| a `sentence B` token (see BERT paper for more details). | |
| `attention_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices | |
| selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max | |
| input sequence length in the current batch. It's the mask that we typically use for attention when | |
| a batch has varying length sentences. | |
| `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size]. | |
| Positions are clamped to the length of the sequence and position outside of the sequence are not taken | |
| into account for computing the loss. | |
| `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size]. | |
| Positions are clamped to the length of the sequence and position outside of the sequence are not taken | |
| into account for computing the loss. | |
| `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1. | |
| It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked. | |
| Outputs: | |
| if `start_positions` and `end_positions` are not `None`: | |
| Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions. | |
| if `start_positions` or `end_positions` is `None`: | |
| Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end | |
| position tokens of shape [batch_size, sequence_length]. | |
| Example usage: | |
| ```python | |
| # Already been converted into WordPiece token ids | |
| input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) | |
| input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) | |
| token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]]) | |
| config = BertConfig(vocab_size_or_config_json_file=32000, hidden_size=768, | |
| num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072) | |
| model = BertForQuestionAnswering(config) | |
| start_logits, end_logits = model(input_ids, token_type_ids, input_mask) | |
| ``` | |
| """ | |
| def __init__(self, config, output_attentions=False, keep_multihead_output=False): | |
| super(ZenForQuestionAnswering, self).__init__(config) | |
| self.output_attentions = output_attentions | |
| self.bert = ZenModel(config, output_attentions=output_attentions, | |
| keep_multihead_output=keep_multihead_output) | |
| self.qa_outputs = nn.Linear(config.hidden_size, 2) | |
| self.init_weights() | |
| def forward(self, input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids=None, attention_mask=None, start_positions=None, | |
| end_positions=None, head_mask=None): | |
| outputs = self.bert(input_ids, input_ngram_ids, ngram_position_matrix, token_type_ids, | |
| attention_mask=attention_mask, | |
| output_all_encoded_layers=False, | |
| head_mask=head_mask) | |
| if self.output_attentions: | |
| all_attentions, sequence_output, _ = outputs | |
| else: | |
| sequence_output, _ = outputs | |
| logits = self.qa_outputs(sequence_output) | |
| start_logits, end_logits = logits.split(1, dim=-1) | |
| start_logits = start_logits.squeeze(-1) | |
| end_logits = end_logits.squeeze(-1) | |
| if start_positions is not None and end_positions is not None: | |
| # If we are on multi-GPU, split add a dimension | |
| if len(start_positions.size()) > 1: | |
| start_positions = start_positions.squeeze(-1) | |
| if len(end_positions.size()) > 1: | |
| end_positions = end_positions.squeeze(-1) | |
| # sometimes the start/end positions are outside our model inputs, we ignore these terms | |
| ignored_index = start_logits.size(1) | |
| start_positions.clamp_(0, ignored_index) | |
| end_positions.clamp_(0, ignored_index) | |
| loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
| start_loss = loss_fct(start_logits, start_positions) | |
| end_loss = loss_fct(end_logits, end_positions) | |
| total_loss = (start_loss + end_loss) / 2 | |
| return total_loss | |
| elif self.output_attentions: | |
| return all_attentions, start_logits, end_logits | |
| return start_logits, end_logits | |