Spaces:
Sleeping
Sleeping
| from transformers import AutoTokenizer, AutoModel | |
| import torch | |
| def get_embedder(): | |
| model_name = "microsoft/MiniLM-L12-H384-uncased" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModel.from_pretrained(model_name) | |
| return tokenizer, model | |
| def embed_text(texts, tokenizer, model): | |
| encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors="pt") | |
| with torch.no_grad(): | |
| model_output = model(**encoded_input) | |
| embeddings = model_output.last_hidden_state.mean(dim=1) | |
| return embeddings.numpy().tolist() |