Spaces:
Sleeping
Sleeping
Update frontend.py
Browse files- frontend.py +80 -112
frontend.py
CHANGED
|
@@ -9,10 +9,10 @@ import plotly.express as px
|
|
| 9 |
from datetime import datetime
|
| 10 |
import uuid
|
| 11 |
|
| 12 |
-
# Simulated in-memory storage for churn log
|
| 13 |
if "churn_log" not in st.session_state:
|
| 14 |
st.session_state.churn_log = []
|
| 15 |
-
|
| 16 |
st.set_page_config(page_title="ChurnSight AI", page_icon="π§ ", layout="wide")
|
| 17 |
|
| 18 |
if os.path.exists("logo.png"):
|
|
@@ -39,34 +39,17 @@ if st.session_state.dark_mode:
|
|
| 39 |
background-color: #121212;
|
| 40 |
color: #f5f5f5;
|
| 41 |
}
|
| 42 |
-
.stTextInput > div > div > input,
|
| 43 |
-
.stTextArea > div > textarea,
|
| 44 |
-
.stSelectbox div div,
|
| 45 |
-
.stDownloadButton > button,
|
| 46 |
-
.stButton > button {
|
| 47 |
-
background-color: #1e1e1e;
|
| 48 |
-
color: white;
|
| 49 |
-
}
|
| 50 |
</style>
|
| 51 |
""", unsafe_allow_html=True)
|
| 52 |
|
| 53 |
-
# Sidebar
|
| 54 |
with st.sidebar:
|
| 55 |
st.header("βοΈ PM Config")
|
| 56 |
st.session_state.dark_mode = st.toggle("π Dark Mode", value=st.session_state.dark_mode)
|
| 57 |
st.session_state.intelligence_mode = st.toggle("π§ Intelligence Mode", value=st.session_state.intelligence_mode)
|
| 58 |
-
|
| 59 |
api_token = st.text_input("π API Token", value="my-secret-key", type="password")
|
| 60 |
-
if not api_token or api_token.strip() == "my-secret-key":
|
| 61 |
-
st.warning("π§ͺ Demo Mode β Not all features active.")
|
| 62 |
-
|
| 63 |
backend_url = st.text_input("π Backend URL", value="http://localhost:8000")
|
| 64 |
-
|
| 65 |
-
sentiment_model = st.selectbox("π Sentiment Model", [
|
| 66 |
-
"Auto-detect",
|
| 67 |
-
"distilbert-base-uncased-finetuned-sst-2-english",
|
| 68 |
-
"nlptown/bert-base-multilingual-uncased-sentiment"
|
| 69 |
-
])
|
| 70 |
industry = st.selectbox("π Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"])
|
| 71 |
product_category = st.selectbox("π§© Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"])
|
| 72 |
use_aspects = st.checkbox("π Detect Pain Points")
|
|
@@ -74,7 +57,7 @@ with st.sidebar:
|
|
| 74 |
verbosity = st.radio("π£οΈ Response Style", ["Brief", "Detailed"])
|
| 75 |
voice_lang = st.selectbox("π Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
|
| 76 |
|
| 77 |
-
#
|
| 78 |
def speak(text, lang='en'):
|
| 79 |
tts = gTTS(text, lang=lang)
|
| 80 |
mp3 = BytesIO()
|
|
@@ -86,40 +69,34 @@ def speak(text, lang='en'):
|
|
| 86 |
|
| 87 |
tab1, tab2 = st.tabs(["π§ Analyze Review", "π Bulk Reviews"])
|
| 88 |
|
| 89 |
-
# === SINGLE REVIEW ===
|
| 90 |
with tab1:
|
| 91 |
st.title("π ChurnSight AI β Product Feedback Assistant")
|
| 92 |
st.markdown("Analyze feedback to detect churn risk, extract pain points, and support product decisions.")
|
| 93 |
-
|
| 94 |
review = st.text_area("π Enter Customer Feedback", value=st.session_state.review, height=180)
|
| 95 |
st.session_state.review = review
|
| 96 |
|
| 97 |
col1, col2, col3 = st.columns(3)
|
| 98 |
-
|
| 99 |
-
analyze = st.button("π Analyze")
|
| 100 |
-
with col2:
|
| 101 |
-
if st.button("π² Example"):
|
| 102 |
-
st.session_state.review = (
|
| 103 |
-
"The app crashes every time I try to checkout. It's so slow and unresponsive. "
|
| 104 |
-
"Customer support never replied. I'm switching to another brand."
|
| 105 |
-
)
|
| 106 |
-
st.session_state.trigger_example_analysis = True
|
| 107 |
-
st.rerun()
|
| 108 |
-
with col3:
|
| 109 |
-
if st.button("π§Ή Clear"):
|
| 110 |
-
for key in ["review", "last_response", "followup_answer"]:
|
| 111 |
-
st.session_state[key] = ""
|
| 112 |
-
st.rerun()
|
| 113 |
-
|
| 114 |
-
if (analyze or st.session_state.trigger_example_analysis) and st.session_state.review:
|
| 115 |
st.session_state.trigger_example_analysis = False
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
with st.spinner("Analyzing feedback..."):
|
| 118 |
try:
|
| 119 |
-
model = None if sentiment_model == "Auto-detect" else sentiment_model
|
| 120 |
payload = {
|
| 121 |
"text": st.session_state.review,
|
| 122 |
-
"model":
|
| 123 |
"industry": industry,
|
| 124 |
"product_category": product_category,
|
| 125 |
"verbosity": verbosity,
|
|
@@ -128,10 +105,10 @@ with tab1:
|
|
| 128 |
}
|
| 129 |
headers = {"x-api-key": api_token}
|
| 130 |
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers)
|
| 131 |
-
if res.
|
| 132 |
st.session_state.last_response = res.json()
|
| 133 |
else:
|
| 134 |
-
st.error(f"
|
| 135 |
except Exception as e:
|
| 136 |
st.error(f"π« Exception: {e}")
|
| 137 |
|
|
@@ -139,19 +116,17 @@ with tab1:
|
|
| 139 |
if data:
|
| 140 |
st.subheader("π PM Insight Summary")
|
| 141 |
st.info(data["summary"])
|
| 142 |
-
st.caption("π Summary Model: facebook/bart-large-cnn | " + verbosity + " response")
|
| 143 |
st.markdown(f"**Industry:** `{data['industry']}` | **Category:** `{data['product_category']}` | **Device:** Web")
|
| 144 |
-
|
| 145 |
st.metric("π Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
|
| 146 |
st.info(f"π’ Emotion: {data['emotion']}")
|
| 147 |
if "churn_risk" in data:
|
| 148 |
risk = data["churn_risk"]
|
| 149 |
color = "π΄" if risk == "High Risk" else "π’"
|
| 150 |
st.metric("π¨ Churn Risk", f"{color} {risk}")
|
| 151 |
-
|
| 152 |
-
if "pain_points" in data and data["pain_points"]:
|
| 153 |
st.error("π Pain Points: " + ", ".join(data["pain_points"]))
|
| 154 |
-
|
|
|
|
| 155 |
try:
|
| 156 |
st.session_state.churn_log.append({
|
| 157 |
"timestamp": datetime.now(),
|
|
@@ -159,9 +134,8 @@ with tab1:
|
|
| 159 |
"churn_risk": data.get("churn_risk", "Unknown"),
|
| 160 |
"session_id": str(uuid.uuid4())
|
| 161 |
})
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
st.session_state.churn_log = st.session_state.churn_log[-1000:]
|
| 165 |
except Exception as e:
|
| 166 |
st.warning(f"π§ͺ Logging failed: {e}")
|
| 167 |
|
|
@@ -170,66 +144,60 @@ with tab1:
|
|
| 170 |
st.download_button("β¬οΈ Download Audio", audio.read(), "summary.mp3")
|
| 171 |
|
| 172 |
st.markdown("### π Ask a Follow-Up")
|
| 173 |
-
|
| 174 |
-
# π‘ Smarter Follow-Up Suggestion Logic
|
| 175 |
sentiment = data["sentiment"]["label"].lower()
|
| 176 |
churn = data.get("churn_risk", "")
|
| 177 |
pain = data.get("pain_points", [])
|
| 178 |
-
|
| 179 |
if sentiment == "positive" and churn == "Low Risk":
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
"What delighted the customer most?"
|
| 184 |
-
]
|
| 185 |
-
elif sentiment == "negative" or churn == "High Risk" or pain:
|
| 186 |
-
sample_questions = [
|
| 187 |
-
"What made the user upset?",
|
| 188 |
-
"Any feature complaints?",
|
| 189 |
-
"Is this user likely to churn?"
|
| 190 |
-
]
|
| 191 |
else:
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
if st.
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
from datetime import datetime
|
| 10 |
import uuid
|
| 11 |
|
| 12 |
+
# Simulated in-memory storage for churn log
|
| 13 |
if "churn_log" not in st.session_state:
|
| 14 |
st.session_state.churn_log = []
|
| 15 |
+
|
| 16 |
st.set_page_config(page_title="ChurnSight AI", page_icon="π§ ", layout="wide")
|
| 17 |
|
| 18 |
if os.path.exists("logo.png"):
|
|
|
|
| 39 |
background-color: #121212;
|
| 40 |
color: #f5f5f5;
|
| 41 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
</style>
|
| 43 |
""", unsafe_allow_html=True)
|
| 44 |
|
| 45 |
+
# Sidebar config
|
| 46 |
with st.sidebar:
|
| 47 |
st.header("βοΈ PM Config")
|
| 48 |
st.session_state.dark_mode = st.toggle("π Dark Mode", value=st.session_state.dark_mode)
|
| 49 |
st.session_state.intelligence_mode = st.toggle("π§ Intelligence Mode", value=st.session_state.intelligence_mode)
|
|
|
|
| 50 |
api_token = st.text_input("π API Token", value="my-secret-key", type="password")
|
|
|
|
|
|
|
|
|
|
| 51 |
backend_url = st.text_input("π Backend URL", value="http://localhost:8000")
|
| 52 |
+
sentiment_model = st.selectbox("π Sentiment Model", ["Auto-detect", "distilbert-base-uncased-finetuned-sst-2-english"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
industry = st.selectbox("π Industry", ["Auto-detect", "Generic", "E-commerce", "Healthcare", "Education"])
|
| 54 |
product_category = st.selectbox("π§© Product Category", ["Auto-detect", "General", "Mobile Devices", "Laptops"])
|
| 55 |
use_aspects = st.checkbox("π Detect Pain Points")
|
|
|
|
| 57 |
verbosity = st.radio("π£οΈ Response Style", ["Brief", "Detailed"])
|
| 58 |
voice_lang = st.selectbox("π Voice Language", ["en", "fr", "es", "de", "hi", "zh"])
|
| 59 |
|
| 60 |
+
# Text-to-Speech
|
| 61 |
def speak(text, lang='en'):
|
| 62 |
tts = gTTS(text, lang=lang)
|
| 63 |
mp3 = BytesIO()
|
|
|
|
| 69 |
|
| 70 |
tab1, tab2 = st.tabs(["π§ Analyze Review", "π Bulk Reviews"])
|
| 71 |
|
| 72 |
+
# === SINGLE REVIEW ANALYSIS ===
|
| 73 |
with tab1:
|
| 74 |
st.title("π ChurnSight AI β Product Feedback Assistant")
|
| 75 |
st.markdown("Analyze feedback to detect churn risk, extract pain points, and support product decisions.")
|
|
|
|
| 76 |
review = st.text_area("π Enter Customer Feedback", value=st.session_state.review, height=180)
|
| 77 |
st.session_state.review = review
|
| 78 |
|
| 79 |
col1, col2, col3 = st.columns(3)
|
| 80 |
+
if col1.button("π Analyze"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
st.session_state.trigger_example_analysis = False
|
| 82 |
+
if col2.button("π² Example"):
|
| 83 |
+
st.session_state.review = (
|
| 84 |
+
"The app crashes every time I try to checkout. It's so slow and unresponsive. "
|
| 85 |
+
"Customer support never replied. I'm switching to another brand."
|
| 86 |
+
)
|
| 87 |
+
st.session_state.trigger_example_analysis = True
|
| 88 |
+
st.rerun()
|
| 89 |
+
if col3.button("π§Ή Clear"):
|
| 90 |
+
for key in ["review", "last_response", "followup_answer"]:
|
| 91 |
+
st.session_state[key] = ""
|
| 92 |
+
st.rerun()
|
| 93 |
+
|
| 94 |
+
if (st.session_state.review and (st.session_state.trigger_example_analysis or st.button("Refresh"))):
|
| 95 |
with st.spinner("Analyzing feedback..."):
|
| 96 |
try:
|
|
|
|
| 97 |
payload = {
|
| 98 |
"text": st.session_state.review,
|
| 99 |
+
"model": sentiment_model if sentiment_model != "Auto-detect" else None,
|
| 100 |
"industry": industry,
|
| 101 |
"product_category": product_category,
|
| 102 |
"verbosity": verbosity,
|
|
|
|
| 105 |
}
|
| 106 |
headers = {"x-api-key": api_token}
|
| 107 |
res = requests.post(f"{backend_url}/analyze/", json=payload, headers=headers)
|
| 108 |
+
if res.ok:
|
| 109 |
st.session_state.last_response = res.json()
|
| 110 |
else:
|
| 111 |
+
st.error(f"Error: {res.status_code} - {res.json().get('detail')}")
|
| 112 |
except Exception as e:
|
| 113 |
st.error(f"π« Exception: {e}")
|
| 114 |
|
|
|
|
| 116 |
if data:
|
| 117 |
st.subheader("π PM Insight Summary")
|
| 118 |
st.info(data["summary"])
|
|
|
|
| 119 |
st.markdown(f"**Industry:** `{data['industry']}` | **Category:** `{data['product_category']}` | **Device:** Web")
|
|
|
|
| 120 |
st.metric("π Sentiment", data["sentiment"]["label"], delta=f"{data['sentiment']['score']:.2%}")
|
| 121 |
st.info(f"π’ Emotion: {data['emotion']}")
|
| 122 |
if "churn_risk" in data:
|
| 123 |
risk = data["churn_risk"]
|
| 124 |
color = "π΄" if risk == "High Risk" else "π’"
|
| 125 |
st.metric("π¨ Churn Risk", f"{color} {risk}")
|
| 126 |
+
if data.get("pain_points"):
|
|
|
|
| 127 |
st.error("π Pain Points: " + ", ".join(data["pain_points"]))
|
| 128 |
+
|
| 129 |
+
# Add to churn log
|
| 130 |
try:
|
| 131 |
st.session_state.churn_log.append({
|
| 132 |
"timestamp": datetime.now(),
|
|
|
|
| 134 |
"churn_risk": data.get("churn_risk", "Unknown"),
|
| 135 |
"session_id": str(uuid.uuid4())
|
| 136 |
})
|
| 137 |
+
if len(st.session_state.churn_log) > 1000:
|
| 138 |
+
st.session_state.churn_log = st.session_state.churn_log[-1000:]
|
|
|
|
| 139 |
except Exception as e:
|
| 140 |
st.warning(f"π§ͺ Logging failed: {e}")
|
| 141 |
|
|
|
|
| 144 |
st.download_button("β¬οΈ Download Audio", audio.read(), "summary.mp3")
|
| 145 |
|
| 146 |
st.markdown("### π Ask a Follow-Up")
|
|
|
|
|
|
|
| 147 |
sentiment = data["sentiment"]["label"].lower()
|
| 148 |
churn = data.get("churn_risk", "")
|
| 149 |
pain = data.get("pain_points", [])
|
|
|
|
| 150 |
if sentiment == "positive" and churn == "Low Risk":
|
| 151 |
+
suggestions = ["What features impressed the user?", "Would they recommend the product?"]
|
| 152 |
+
elif churn == "High Risk":
|
| 153 |
+
suggestions = ["What made the user upset?", "Is this user likely to churn?"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
else:
|
| 155 |
+
suggestions = ["What are the key takeaways?", "Is there any concern raised?"]
|
| 156 |
+
selected_q = st.selectbox("π‘ Suggested Questions", ["Type your own..."] + suggestions)
|
| 157 |
+
q_input = st.text_input("π Your Question") if selected_q == "Type your own..." else selected_q
|
| 158 |
+
if q_input:
|
| 159 |
+
follow_payload = {"text": st.session_state.review, "question": q_input, "verbosity": verbosity}
|
| 160 |
+
res = requests.post(f"{backend_url}/followup/", json=follow_payload, headers=headers)
|
| 161 |
+
if res.ok:
|
| 162 |
+
st.success(res.json().get("answer"))
|
| 163 |
+
else:
|
| 164 |
+
st.error("Failed to answer.")
|
| 165 |
+
|
| 166 |
+
if st.checkbox("π Show Churn Risk Trends"):
|
| 167 |
+
try:
|
| 168 |
+
df = pd.DataFrame(st.session_state.churn_log)
|
| 169 |
+
df["date"] = pd.to_datetime(df["timestamp"]).dt.date
|
| 170 |
+
trend = df.groupby(["date", "churn_risk"]).size().unstack(fill_value=0).reset_index()
|
| 171 |
+
st.markdown("#### π
Daily Churn Trend")
|
| 172 |
+
fig = px.bar(trend, x="date", y=["High Risk", "Low Risk"], barmode="group")
|
| 173 |
+
st.plotly_chart(fig, use_container_width=True)
|
| 174 |
+
st.download_button("β¬οΈ Export Trend CSV", trend.to_csv(index=False), "churn_trend.csv")
|
| 175 |
+
except Exception as e:
|
| 176 |
+
st.error(f"Trend error: {e}")
|
| 177 |
+
|
| 178 |
+
# === BULK REVIEW ANALYSIS ===
|
| 179 |
+
with tab2:
|
| 180 |
+
st.title("π Bulk Feedback Analysis")
|
| 181 |
+
bulk_input = st.text_area("π₯ Paste multiple reviews (one per line)", height=250)
|
| 182 |
+
if st.button("π Analyze Bulk"):
|
| 183 |
+
lines = [l.strip() for l in bulk_input.strip().splitlines() if l.strip()]
|
| 184 |
+
payload = {
|
| 185 |
+
"reviews": lines,
|
| 186 |
+
"model": sentiment_model if sentiment_model != "Auto-detect" else None,
|
| 187 |
+
"industry": None,
|
| 188 |
+
"product_category": None,
|
| 189 |
+
"device": None,
|
| 190 |
+
"aspects": use_aspects,
|
| 191 |
+
"intelligence": st.session_state.intelligence_mode
|
| 192 |
+
}
|
| 193 |
+
try:
|
| 194 |
+
res = requests.post(f"{backend_url}/bulk/?token={api_token}", json=payload)
|
| 195 |
+
if res.ok:
|
| 196 |
+
results = res.json().get("results", [])
|
| 197 |
+
df = pd.DataFrame(results)
|
| 198 |
+
st.dataframe(df)
|
| 199 |
+
st.download_button("β¬οΈ Export Results CSV", df.to_csv(index=False), "bulk_results.csv")
|
| 200 |
+
else:
|
| 201 |
+
st.error(f"API Error: {res.status_code}")
|
| 202 |
+
except Exception as e:
|
| 203 |
+
st.error(f"Bulk analysis failed: {e}")
|