|
|
|
|
|
import torch
|
|
|
|
|
|
try:
|
|
|
import flash_attn_interface
|
|
|
FLASH_ATTN_3_AVAILABLE = True
|
|
|
print(f'FLASH_ATTN_3_AVAILABLE:{FLASH_ATTN_3_AVAILABLE}')
|
|
|
except ModuleNotFoundError:
|
|
|
print(f'faield FLASH_ATTN_3_AVAILABLE:{FLASH_ATTN_3_AVAILABLE}')
|
|
|
FLASH_ATTN_3_AVAILABLE = False
|
|
|
|
|
|
try:
|
|
|
import flash_attn
|
|
|
FLASH_ATTN_2_AVAILABLE = True
|
|
|
except ModuleNotFoundError:
|
|
|
FLASH_ATTN_2_AVAILABLE = False
|
|
|
|
|
|
import warnings
|
|
|
|
|
|
__all__ = [
|
|
|
'flash_attention',
|
|
|
'attention',
|
|
|
'attention_with_weights',
|
|
|
]
|
|
|
|
|
|
|
|
|
def flash_attention(
|
|
|
q,
|
|
|
k,
|
|
|
v,
|
|
|
q_lens=None,
|
|
|
k_lens=None,
|
|
|
dropout_p=0.,
|
|
|
softmax_scale=None,
|
|
|
q_scale=None,
|
|
|
causal=False,
|
|
|
window_size=(-1, -1),
|
|
|
deterministic=False,
|
|
|
dtype=torch.bfloat16,
|
|
|
version=None
|
|
|
):
|
|
|
"""
|
|
|
q: [B, Lq, Nq, C1].
|
|
|
k: [B, Lk, Nk, C1].
|
|
|
v: [B, Lk, Nk, C2]. Nq must be divisible by Nk.
|
|
|
q_lens: [B].
|
|
|
k_lens: [B].
|
|
|
dropout_p: float. Dropout probability.
|
|
|
softmax_scale: float. The scaling of QK^T before applying softmax.
|
|
|
causal: bool. Whether to apply causal attention mask.
|
|
|
window_size: (left right). If not (-1, -1), apply sliding window local attention.
|
|
|
deterministic: bool. If True, slightly slower and uses more memory.
|
|
|
dtype: torch.dtype. Apply when dtype of q/k/v is not float16/bfloat16.
|
|
|
"""
|
|
|
half_dtypes = (torch.float16, torch.bfloat16)
|
|
|
assert dtype in half_dtypes
|
|
|
assert q.device.type == 'cuda' and q.size(-1) <= 256
|
|
|
|
|
|
|
|
|
b, lq, nheads, lk, out_dtype = q.size(0), q.size(1), q.size(2), k.size(1), q.dtype
|
|
|
|
|
|
def half(x):
|
|
|
return x if x.dtype in half_dtypes else x.to(dtype)
|
|
|
|
|
|
|
|
|
if q_lens is None:
|
|
|
q = half(q.flatten(0, 1))
|
|
|
q_lens = torch.tensor(
|
|
|
[lq] * b, dtype=torch.int32).to(
|
|
|
device=q.device, non_blocking=True)
|
|
|
else:
|
|
|
q = half(torch.cat([u[:v] for u, v in zip(q, q_lens)]))
|
|
|
|
|
|
|
|
|
if k_lens is None:
|
|
|
k = half(k.flatten(0, 1))
|
|
|
v = half(v.flatten(0, 1))
|
|
|
k_lens = torch.tensor(
|
|
|
[lk] * b, dtype=torch.int32).to(
|
|
|
device=k.device, non_blocking=True)
|
|
|
else:
|
|
|
k = half(torch.cat([u[:v] for u, v in zip(k, k_lens)]))
|
|
|
v = half(torch.cat([u[:v] for u, v in zip(v, k_lens)]))
|
|
|
|
|
|
q = q.to(v.dtype)
|
|
|
k = k.to(v.dtype)
|
|
|
|
|
|
if q_scale is not None:
|
|
|
q = q * q_scale
|
|
|
|
|
|
if version is not None and version == 3 and not FLASH_ATTN_3_AVAILABLE:
|
|
|
warnings.warn(
|
|
|
'Flash attention 3 is not available, use flash attention 2 instead.'
|
|
|
)
|
|
|
|
|
|
|
|
|
if FLASH_ATTN_3_AVAILABLE:
|
|
|
ret = flash_attn_interface.flash_attn_varlen_func(
|
|
|
q=q,
|
|
|
k=k,
|
|
|
v=v,
|
|
|
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
|
|
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
|
|
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
|
|
0, dtype=torch.int32).to(k.device, non_blocking=True),
|
|
|
seqused_q=None,
|
|
|
seqused_k=None,
|
|
|
max_seqlen_q=lq,
|
|
|
max_seqlen_k=lk,
|
|
|
softmax_scale=softmax_scale,
|
|
|
causal=causal,
|
|
|
deterministic=deterministic
|
|
|
)
|
|
|
|
|
|
|
|
|
out0 = ret[0] if isinstance(ret, (tuple, list)) else ret
|
|
|
|
|
|
|
|
|
total_q = b * lq
|
|
|
if out0.dim() == 3:
|
|
|
if out0.shape[0] == total_q:
|
|
|
pass
|
|
|
elif out0.shape[0] == nheads and out0.shape[1] == total_q:
|
|
|
|
|
|
out0 = out0.transpose(0, 1).contiguous()
|
|
|
else:
|
|
|
raise RuntimeError(
|
|
|
f"Unexpected FA3 output shape {tuple(out0.shape)}; "
|
|
|
f"expected (total_q, nheads, headdim) or (nheads, total_q, headdim)"
|
|
|
)
|
|
|
else:
|
|
|
raise RuntimeError(
|
|
|
f"Unexpected FA3 output rank {out0.dim()} with shape {tuple(out0.shape)}; "
|
|
|
f"expected a 3D tensor."
|
|
|
)
|
|
|
|
|
|
x = out0.unflatten(0, (b, lq))
|
|
|
|
|
|
else:
|
|
|
assert FLASH_ATTN_2_AVAILABLE
|
|
|
x = flash_attn.flash_attn_varlen_func(
|
|
|
q=q,
|
|
|
k=k,
|
|
|
v=v,
|
|
|
cu_seqlens_q=torch.cat([q_lens.new_zeros([1]), q_lens]).cumsum(
|
|
|
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
|
|
cu_seqlens_k=torch.cat([k_lens.new_zeros([1]), k_lens]).cumsum(
|
|
|
0, dtype=torch.int32).to(q.device, non_blocking=True),
|
|
|
max_seqlen_q=lq,
|
|
|
max_seqlen_k=lk,
|
|
|
dropout_p=dropout_p,
|
|
|
softmax_scale=softmax_scale,
|
|
|
causal=causal,
|
|
|
window_size=window_size,
|
|
|
deterministic=deterministic).unflatten(0, (b, lq))
|
|
|
|
|
|
|
|
|
return x.type(out_dtype)
|
|
|
|
|
|
|
|
|
def attention_with_weights(
|
|
|
q,
|
|
|
k,
|
|
|
v,
|
|
|
q_lens=None,
|
|
|
k_lens=None,
|
|
|
softmax_scale=None,
|
|
|
q_scale=None,
|
|
|
causal=False,
|
|
|
average_for_q=False,
|
|
|
total_video_latent_frames = 21
|
|
|
):
|
|
|
"""
|
|
|
Compute attention with explicit attention weights for visualization.
|
|
|
Returns both output and attention weights.
|
|
|
"""
|
|
|
out_dtype = q.dtype
|
|
|
|
|
|
|
|
|
b, lq, lk = q.size(0), q.size(1), k.size(1)
|
|
|
|
|
|
if q_lens is None:
|
|
|
q_lens = torch.tensor([lq] * b, dtype=torch.int32, device=q.device)
|
|
|
else:
|
|
|
|
|
|
q_lens = q_lens.to(q.device)
|
|
|
|
|
|
if k_lens is None:
|
|
|
k_lens = torch.tensor([lk] * b, dtype=torch.int32, device=k.device)
|
|
|
else:
|
|
|
|
|
|
k_lens = k_lens.to(k.device)
|
|
|
|
|
|
|
|
|
if q_scale is not None:
|
|
|
q = q * q_scale
|
|
|
|
|
|
|
|
|
|
|
|
scale = softmax_scale if softmax_scale is not None else (q.size(-1) ** -0.5)
|
|
|
|
|
|
|
|
|
scores = torch.einsum('blhd,bshd->bhls', q, k) * scale
|
|
|
|
|
|
|
|
|
if causal:
|
|
|
mask = torch.triu(torch.ones(lq, lk, device=q.device, dtype=torch.bool), diagonal=1)
|
|
|
scores.masked_fill_(mask.unsqueeze(0).unsqueeze(0), float('-inf'))
|
|
|
|
|
|
|
|
|
k_mask = torch.arange(lk, device=k.device).unsqueeze(0) >= k_lens.unsqueeze(1)
|
|
|
scores.masked_fill_(k_mask.unsqueeze(1).unsqueeze(2), float('-inf'))
|
|
|
|
|
|
|
|
|
q_mask = torch.arange(lq, device=q.device).unsqueeze(0) >= q_lens.unsqueeze(1)
|
|
|
scores.masked_fill_(q_mask.unsqueeze(1).unsqueeze(3), float('-inf'))
|
|
|
|
|
|
|
|
|
attn_weights = torch.softmax(scores, dim=-1)
|
|
|
assert attn_weights.shape[0] == 1, "Batch size > 1 not supported for attention visualization."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if average_for_q:
|
|
|
|
|
|
avg_attn_weights = torch.max(attn_weights, dim=3)[0].mean(dim=(0, 1))
|
|
|
else:
|
|
|
if 0:
|
|
|
avg_attn_weights = torch.mean(attn_weights, dim=(0, 1, 2))
|
|
|
elif 1:
|
|
|
B, H, Lq, Lk = attn_weights.shape
|
|
|
per_frame_seq_len = Lk // total_video_latent_frames
|
|
|
per_frame_aud_len = Lq // total_video_latent_frames
|
|
|
|
|
|
avg_attn_weights = torch.zeros((Lk,), device=attn_weights.device, dtype=attn_weights.dtype)
|
|
|
|
|
|
eps = 1e-8
|
|
|
for i in range(total_video_latent_frames):
|
|
|
start_idx_v = i * per_frame_seq_len
|
|
|
end_idx_v = (i + 1) * per_frame_seq_len
|
|
|
|
|
|
start_idx_a = i * per_frame_aud_len
|
|
|
end_idx_a = (i + 1) * per_frame_aud_len
|
|
|
|
|
|
|
|
|
attn_chunk = attn_weights[0, :, start_idx_a:end_idx_a, start_idx_v:end_idx_v]
|
|
|
|
|
|
|
|
|
|
|
|
p = attn_chunk / (attn_chunk.sum(dim=-1, keepdim=True) + eps)
|
|
|
entropy = -(p * (p + eps).log()).sum(dim=-1).mean(dim=1)
|
|
|
|
|
|
|
|
|
saliency = 1.0 / (entropy + 1e-6)
|
|
|
head_w = saliency / (saliency.sum() + eps)
|
|
|
|
|
|
|
|
|
per_head = torch.amax(attn_chunk, dim=1)
|
|
|
weighted = (per_head * head_w[:, None]).sum(dim=0)
|
|
|
|
|
|
avg_attn_weights[start_idx_v:end_idx_v] = weighted
|
|
|
else:
|
|
|
avg_attn_weights = torch.mean(attn_weights, dim=(0, 2)).max(dim=(0))[0]
|
|
|
|
|
|
|
|
|
out = torch.einsum('bhls,bshd->blhd', attn_weights, v)
|
|
|
|
|
|
return out.to(out_dtype), avg_attn_weights.to(out_dtype)
|
|
|
|
|
|
|
|
|
def attention(
|
|
|
q,
|
|
|
k,
|
|
|
v,
|
|
|
q_lens=None,
|
|
|
k_lens=None,
|
|
|
dropout_p=0.,
|
|
|
softmax_scale=None,
|
|
|
q_scale=None,
|
|
|
causal=False,
|
|
|
window_size=(-1, -1),
|
|
|
deterministic=False,
|
|
|
dtype=torch.bfloat16,
|
|
|
fa_version=None,
|
|
|
):
|
|
|
if FLASH_ATTN_2_AVAILABLE or FLASH_ATTN_3_AVAILABLE:
|
|
|
return flash_attention(
|
|
|
q=q,
|
|
|
k=k,
|
|
|
v=v,
|
|
|
q_lens=q_lens,
|
|
|
k_lens=k_lens,
|
|
|
dropout_p=dropout_p,
|
|
|
softmax_scale=softmax_scale,
|
|
|
q_scale=q_scale,
|
|
|
causal=causal,
|
|
|
window_size=window_size,
|
|
|
deterministic=deterministic,
|
|
|
dtype=dtype,
|
|
|
version=fa_version,
|
|
|
)
|
|
|
else:
|
|
|
if q_lens is not None or k_lens is not None:
|
|
|
warnings.warn(
|
|
|
'Padding mask is disabled when using scaled_dot_product_attention. It can have a significant impact on performance.'
|
|
|
)
|
|
|
attn_mask = None
|
|
|
|
|
|
q = q.transpose(1, 2).to(dtype)
|
|
|
k = k.transpose(1, 2).to(dtype)
|
|
|
v = v.transpose(1, 2).to(dtype)
|
|
|
|
|
|
out = torch.nn.functional.scaled_dot_product_attention(
|
|
|
q, k, v, attn_mask=attn_mask, is_causal=causal, dropout_p=dropout_p)
|
|
|
|
|
|
out = out.transpose(1, 2).contiguous()
|
|
|
return out
|
|
|
|