# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. import math import torch import torch.cuda.amp as amp import torch.nn as nn import torch.nn.functional as F from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.models.modeling_utils import ModelMixin from .attention import flash_attention from torch.utils.checkpoint import checkpoint from ovi.distributed_comms.communications import all_gather, all_to_all_4D from ovi.distributed_comms.parallel_states import nccl_info, get_sequence_parallel_state def gradient_checkpointing(module: nn.Module, *args, enabled: bool, **kwargs): if enabled: return checkpoint(module, *args, use_reentrant=False, **kwargs) else: return module(*args, **kwargs) def sinusoidal_embedding_1d(dim, position): # preprocess assert dim % 2 == 0 half = dim // 2 position = position.type(torch.float64) # calculation sinusoid = torch.outer( position, torch.pow(10000, -torch.arange(half).to(position).div(half))) x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) return x @amp.autocast(enabled=False) def rope_params(max_seq_len, dim, theta=10000, freqs_scaling=1.0): assert dim % 2 == 0 pos = torch.arange(max_seq_len) freqs = 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float64).div(dim)) freqs = freqs_scaling * freqs freqs = torch.outer(pos, freqs) freqs = torch.polar(torch.ones_like(freqs), freqs) return freqs @amp.autocast(enabled=False) def rope_apply_1d(x, grid_sizes, freqs): n, c = x.size(2), x.size(3) // 2 ## b l h d c_rope = freqs.shape[1] # number of complex dims to rotate assert c_rope <= c, "RoPE dimensions cannot exceed half of hidden size" # loop over samples output = [] for i, (l, ) in enumerate(grid_sizes.tolist()): seq_len = l # precompute multipliers x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape( seq_len, n, -1, 2)) # [l n d//2] x_i_rope = x_i[:, :, :c_rope] * freqs[:seq_len, None, :] # [L, N, c_rope] x_i_passthrough = x_i[:, :, c_rope:] # untouched dims x_i = torch.cat([x_i_rope, x_i_passthrough], dim=2) # apply rotary embedding x_i = torch.view_as_real(x_i).flatten(2) x_i = torch.cat([x_i, x[i, seq_len:]]) # append to collection output.append(x_i) return torch.stack(output).bfloat16() @amp.autocast(enabled=False) def rope_apply_3d(x, grid_sizes, freqs): n, c = x.size(2), x.size(3) // 2 # split freqs freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) # loop over samples output = [] for i, (f, h, w) in enumerate(grid_sizes.tolist()): seq_len = f * h * w # precompute multipliers x_i = torch.view_as_complex(x[i, :seq_len].to(torch.float64).reshape( seq_len, n, -1, 2)) freqs_i = torch.cat([ freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1) ], dim=-1).reshape(seq_len, 1, -1) # apply rotary embedding x_i = torch.view_as_real(x_i * freqs_i).flatten(2) x_i = torch.cat([x_i, x[i, seq_len:]]) # append to collection output.append(x_i) return torch.stack(output).bfloat16() @amp.autocast(enabled=False) def rope_apply(x, grid_sizes, freqs): x_ndim = grid_sizes.shape[-1] if x_ndim == 3: return rope_apply_3d(x, grid_sizes, freqs) else: return rope_apply_1d(x, grid_sizes, freqs) class ChannelLastConv1d(nn.Conv1d): def forward(self, x: torch.Tensor) -> torch.Tensor: x = x.permute(0, 2, 1) x = super().forward(x) x = x.permute(0, 2, 1) return x class ConvMLP(nn.Module): def __init__( self, dim: int, hidden_dim: int, multiple_of: int = 256, kernel_size: int = 3, padding: int = 1, ): """ Initialize the FeedForward module. Args: dim (int): Input dimension. hidden_dim (int): Hidden dimension of the feedforward layer. multiple_of (int): Value to ensure hidden dimension is a multiple of this value. Attributes: w1 (ColumnParallelLinear): Linear transformation for the first layer. w2 (RowParallelLinear): Linear transformation for the second layer. w3 (ColumnParallelLinear): Linear transformation for the third layer. """ super().__init__() hidden_dim = int(2 * hidden_dim / 3) hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) self.w1 = ChannelLastConv1d(dim, hidden_dim, bias=False, kernel_size=kernel_size, padding=padding) self.w2 = ChannelLastConv1d(hidden_dim, dim, bias=False, kernel_size=kernel_size, padding=padding) self.w3 = ChannelLastConv1d(dim, hidden_dim, bias=False, kernel_size=kernel_size, padding=padding) def forward(self, x): return self.w2(F.silu(self.w1(x)) * self.w3(x)) class WanRMSNorm(nn.Module): def __init__(self, dim, eps=1e-5): super().__init__() self.dim = dim self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def forward(self, x): r""" Args: x(Tensor): Shape [B, L, C] """ return self._norm(x.bfloat16()).type_as(x) * self.weight def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) class WanLayerNorm(nn.LayerNorm): def __init__(self, dim, eps=1e-6, elementwise_affine=False): super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps) def forward(self, x): r""" Args: x(Tensor): Shape [B, L, C] """ return super().forward(x.bfloat16()).type_as(x) class WanSelfAttention(nn.Module): def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6): assert dim % num_heads == 0 super().__init__() self.dim = dim self.num_heads = num_heads self.head_dim = dim // num_heads self.window_size = window_size self.qk_norm = qk_norm self.eps = eps # layers self.q = nn.Linear(dim, dim) self.k = nn.Linear(dim, dim) self.v = nn.Linear(dim, dim) self.o = nn.Linear(dim, dim) self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() # optional sequence parallelism # self.world_size = get_world_size() self.use_sp = get_sequence_parallel_state() if self.use_sp: self.sp_size = nccl_info.sp_size self.sp_rank = nccl_info.rank_within_group assert self.num_heads % self.sp_size == 0, \ f"Num heads {self.num_heads} must be divisible by sp_size {self.sp_size}" # query, key, value function def qkv_fn(self, x): b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim q = self.norm_q(self.q(x)).view(b, s, n, d) k = self.norm_k(self.k(x)).view(b, s, n, d) v = self.v(x).view(b, s, n, d) return q, k, v def forward(self, x, seq_lens, grid_sizes, freqs): r""" Args: x(Tensor): Shape [B, L, C] seq_lens(Tensor): Shape [B] grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] """ q, k, v = self.qkv_fn(x) if self.use_sp: # print(f"[DEBUG SP] Doing all to all to shard head") q = all_to_all_4D(q, scatter_dim=2, gather_dim=1) k = all_to_all_4D(k, scatter_dim=2, gather_dim=1) v = all_to_all_4D(v, scatter_dim=2, gather_dim=1) # [B, L, H/P, C/H] x = flash_attention( q=rope_apply(q, grid_sizes, freqs), k=rope_apply(k, grid_sizes, freqs), v=v, k_lens=seq_lens, window_size=self.window_size) if self.use_sp: # print(f"[DEBUG SP] Doing all to all to shard sequence") x = all_to_all_4D(x, scatter_dim=1, gather_dim=2) # [B, L/P, H, C/H] # output x = x.flatten(2) x = self.o(x) return x class WanT2VCrossAttention(WanSelfAttention): def qkv_fn(self, x, context): b, n, d = x.size(0), self.num_heads, self.head_dim # compute query, key, value q = self.norm_q(self.q(x)).view(b, -1, n, d) k = self.norm_k(self.k(context)).view(b, -1, n, d) v = self.v(context).view(b, -1, n, d) return q, k, v def forward(self, x, context, context_lens): r""" Args: x(Tensor): Shape [B, L1, C] context(Tensor): Shape [B, L2, C] context_lens(Tensor): Shape [B] """ q, k, v = self.qkv_fn(x, context) # compute attention x = flash_attention(q, k, v, k_lens=context_lens) # output x = x.flatten(2) x = self.o(x) return x class WanI2VCrossAttention(WanSelfAttention): def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6, additional_emb_length=None): super().__init__(dim, num_heads, window_size, qk_norm, eps) self.k_img = nn.Linear(dim, dim) self.v_img = nn.Linear(dim, dim) # self.alpha = nn.Parameter(torch.zeros((1, ))) self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() self.additional_emb_length = additional_emb_length def qkv_fn(self, x, context): context_img = context[:, : self.additional_emb_length] context = context[:, self.additional_emb_length :] b, n, d = x.size(0), self.num_heads, self.head_dim # compute query, key, value q = self.norm_q(self.q(x)).view(b, -1, n, d) k = self.norm_k(self.k(context)).view(b, -1, n, d) v = self.v(context).view(b, -1, n, d) k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d) v_img = self.v_img(context_img).view(b, -1, n, d) return q, k, v, k_img, v_img def forward(self, x, context, context_lens): r""" Args: x(Tensor): Shape [B, L1, C] context(Tensor): Shape [B, L2, C] context_lens(Tensor): Shape [B] """ q, k, v, k_img, v_img = self.qkv_fn(x, context) if self.use_sp: # print(f"[DEBUG SP] Doing all to all to shard head") q = all_to_all_4D(q, scatter_dim=2, gather_dim=1) k = torch.chunk(k, self.sp_size, dim=2)[self.sp_rank] v = torch.chunk(v, self.sp_size, dim=2)[self.sp_rank] k_img = torch.chunk(k_img, self.sp_size, dim=2)[self.sp_rank] v_img = torch.chunk(v_img, self.sp_size, dim=2)[self.sp_rank] # [B, L, H/P, C/H] # k_img: [B, L, H, C/H] img_x = flash_attention(q, k_img, v_img, k_lens=None) # compute attention x = flash_attention(q, k, v, k_lens=context_lens) if self.use_sp: # print(f"[DEBUG SP] Doing all to all to shard sequence") x = all_to_all_4D(x, scatter_dim=1, gather_dim=2) # [B, L/P, H, C/H] # output x = x.flatten(2) img_x = img_x.flatten(2) x = x + img_x x = self.o(x) return x WAN_CROSSATTENTION_CLASSES = { 't2v_cross_attn': WanT2VCrossAttention, 'i2v_cross_attn': WanI2VCrossAttention, } class ModulationAdd(nn.Module): def __init__(self, dim, num): super().__init__() self.modulation = nn.Parameter(torch.randn(1, num, dim) / dim**0.5) def forward(self, e): return self.modulation + e class WanAttentionBlock(nn.Module): def __init__(self, cross_attn_type, dim, ffn_dim, num_heads, window_size=(-1, -1), qk_norm=True, cross_attn_norm=False, eps=1e-6, additional_emb_length=None): super().__init__() self.dim = dim self.ffn_dim = ffn_dim self.num_heads = num_heads self.window_size = window_size self.qk_norm = qk_norm self.cross_attn_norm = cross_attn_norm self.eps = eps # layers self.norm1 = WanLayerNorm(dim, eps) self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps) self.norm3 = WanLayerNorm( dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity() if cross_attn_type == 'i2v_cross_attn': assert additional_emb_length is not None, "additional_emb_length should be specified for i2v_cross_attn" self.cross_attn = WanI2VCrossAttention(dim, num_heads, (-1, -1), qk_norm, eps, additional_emb_length) else: assert additional_emb_length is None, "additional_emb_length should be None for t2v_cross_attn" self.cross_attn = WanT2VCrossAttention(dim, num_heads, (-1, -1), qk_norm, eps, ) self.norm2 = WanLayerNorm(dim, eps) self.ffn = nn.Sequential( nn.Linear(dim, ffn_dim), nn.GELU(approximate='tanh'), nn.Linear(ffn_dim, dim)) # modulation # self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) # self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) self.modulation = ModulationAdd(dim, 6) def forward( self, x, e, seq_lens, grid_sizes, freqs, context, context_lens, ): r""" Args: x(Tensor): Shape [B, L, C] e(Tensor): Shape [B, L1, 6, C] seq_lens(Tensor): Shape [B], length of each sequence in batch grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] """ assert e.dtype == torch.bfloat16 assert len(e.shape) == 4 and e.size(2) == 6 and e.shape[1] == x.shape[1], f"{e.shape}, {x.shape}" with torch.amp.autocast('cuda', dtype=torch.bfloat16): e = self.modulation(e).chunk(6, dim=2) assert e[0].dtype == torch.bfloat16 # self-attention y = self.self_attn( self.norm1(x).bfloat16() * (1 + e[1].squeeze(2)) + e[0].squeeze(2), seq_lens, grid_sizes, freqs) with torch.amp.autocast('cuda', dtype=torch.bfloat16): x = x + y * e[2].squeeze(2) # cross-attention & ffn function def cross_attn_ffn(x, context, context_lens, e): x = x + self.cross_attn(self.norm3(x), context, context_lens) y = self.ffn( self.norm2(x).bfloat16() * (1 + e[4].squeeze(2)) + e[3].squeeze(2)) with torch.amp.autocast('cuda', dtype=torch.bfloat16): x = x + y * e[5].squeeze(2) return x x = cross_attn_ffn(x, context, context_lens, e) return x class Head(nn.Module): def __init__(self, dim, out_dim, patch_size, eps=1e-6): super().__init__() self.dim = dim self.out_dim = out_dim self.patch_size = patch_size self.eps = eps # layers out_dim = math.prod(patch_size) * out_dim self.norm = WanLayerNorm(dim, eps) self.head = nn.Linear(dim, out_dim) # modulation self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) def forward(self, x, e): r""" Args: x(Tensor): Shape [B, L1, C] e(Tensor): Shape [B, L, C] """ assert e.dtype == torch.bfloat16 with torch.amp.autocast('cuda', dtype=torch.bfloat16): e = (self.modulation.unsqueeze(0) + e.unsqueeze(2)).chunk(2, dim=2) # 1 1 2 D, B L 1 D -> B L 2 D -> 2 * (B L 1 D) x = (self.head(self.norm(x) * (1 + e[1].squeeze(2)) + e[0].squeeze(2))) return x class MLPProj(torch.nn.Module): def __init__(self, in_dim, out_dim): super().__init__() self.proj = torch.nn.Sequential( torch.nn.LayerNorm(in_dim), torch.nn.Linear(in_dim, in_dim), torch.nn.GELU(), torch.nn.Linear(in_dim, out_dim), torch.nn.LayerNorm(out_dim)) def forward(self, image_embeds): clip_extra_context_tokens = self.proj(image_embeds) return clip_extra_context_tokens class WanModel(ModelMixin, ConfigMixin): r""" Wan diffusion backbone supporting both text-to-video and image-to-video, text-to-audio. """ ignore_for_config = [ 'patch_size', 'cross_attn_norm', 'qk_norm', 'text_dim', 'window_size' ] _no_split_modules = ['WanAttentionBlock'] @register_to_config def __init__(self, model_type='t2v', patch_size=(1, 2, 2), text_len=512, in_dim=16, dim=2048, ffn_dim=8192, freq_dim=256, text_dim=4096, additional_emb_dim=None, additional_emb_length=None, out_dim=16, num_heads=16, num_layers=32, window_size=(-1, -1), qk_norm=True, cross_attn_norm=True, gradient_checkpointing = False, temporal_rope_scaling_factor=1.0, eps=1e-6): r""" Initialize the diffusion model backbone. Args: model_type (`str`, *optional*, defaults to 't2v'): Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): 3D patch dimensions for video embedding (t_patch, h_patch, w_patch) text_len (`int`, *optional*, defaults to 512): Fixed length for text embeddings in_dim (`int`, *optional*, defaults to 16): Input video channels (C_in) dim (`int`, *optional*, defaults to 2048): Hidden dimension of the transformer ffn_dim (`int`, *optional*, defaults to 8192): Intermediate dimension in feed-forward network freq_dim (`int`, *optional*, defaults to 256): Dimension for sinusoidal time embeddings text_dim (`int`, *optional*, defaults to 4096): Input dimension for text embeddings out_dim (`int`, *optional*, defaults to 16): Output video channels (C_out) num_heads (`int`, *optional*, defaults to 16): Number of attention heads num_layers (`int`, *optional*, defaults to 32): Number of transformer blocks window_size (`tuple`, *optional*, defaults to (-1, -1)): Window size for local attention (-1 indicates global attention) qk_norm (`bool`, *optional*, defaults to True): Enable query/key normalization cross_attn_norm (`bool`, *optional*, defaults to False): Enable cross-attention normalization eps (`float`, *optional*, defaults to 1e-6): Epsilon value for normalization layers """ super().__init__() assert model_type in ['t2v', 'i2v', 't2a', 'tt2a', 'ti2v'] ## tt2a means text transcript + text description to audio (to support both TTS and T2A self.model_type = model_type is_audio_type = "a" in self.model_type is_video_type = "v" in self.model_type assert is_audio_type ^ is_video_type, "Either audio or video model should be specified" if is_audio_type: ## audio model assert len(patch_size) == 1 and patch_size[0] == 1, "Audio model should only accept 1 dimensional input, and we dont do patchify" self.patch_size = patch_size self.text_len = text_len self.in_dim = in_dim self.dim = dim self.ffn_dim = ffn_dim self.freq_dim = freq_dim self.text_dim = text_dim self.out_dim = out_dim self.num_heads = num_heads self.num_layers = num_layers self.window_size = window_size self.qk_norm = qk_norm self.cross_attn_norm = cross_attn_norm self.eps = eps self.temporal_rope_scaling_factor = temporal_rope_scaling_factor self.is_audio_type = is_audio_type self.is_video_type = is_video_type # embeddings if is_audio_type: ## hardcoded to MMAudio self.patch_embedding = nn.Sequential( ChannelLastConv1d(in_dim, dim, kernel_size=7, padding=3), nn.SiLU(), ConvMLP(dim, dim * 4, kernel_size=7, padding=3), ) else: self.patch_embedding = nn.Conv3d( in_dim, dim, kernel_size=patch_size, stride=patch_size) self.text_embedding = nn.Sequential( nn.Linear(text_dim, dim), nn.GELU(approximate='tanh'), nn.Linear(dim, dim)) self.time_embedding = nn.Sequential( nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) self.use_sp = get_sequence_parallel_state() # seq parallel if self.use_sp: self.sp_size = nccl_info.sp_size self.sp_rank = nccl_info.rank_within_group assert self.num_heads % self.sp_size == 0, \ f"Num heads {self.num_heads} must be divisible by sp_size {self.sp_size}" # blocks ## so i2v and tt2a share the same cross attention while t2v and t2a share the same cross attention cross_attn_type = 't2v_cross_attn' if model_type in ['t2v', 't2a', 'ti2v'] else 'i2v_cross_attn' if cross_attn_type == 't2v_cross_attn': assert additional_emb_dim is None and additional_emb_length is None, "additional_emb_length should be None for t2v and t2a model" else: assert additional_emb_dim is not None and additional_emb_length is not None, "additional_emb_length should be specified for i2v and tt2a model" self.blocks = nn.ModuleList([ WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, additional_emb_length) for _ in range(num_layers) ]) # head self.head = Head(dim, out_dim, patch_size, eps) self.set_gradient_checkpointing(enable=gradient_checkpointing) self.set_rope_params() if model_type in ['i2v', 'tt2a']: self.img_emb = MLPProj(additional_emb_dim, dim) # initialize weights self.init_weights() self.gradient_checkpointing = False def set_rope_params(self): # buffers (don't use register_buffer otherwise dtype will be changed in to()) dim = self.dim num_heads = self.num_heads assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 d = dim // num_heads if self.is_audio_type: ## to be determined # self.freqs = rope_params(1024, d, freqs_scaling=temporal_rope_scaling_factor) self.freqs = rope_params(1024, d - 4 * (d // 6), freqs_scaling=self.temporal_rope_scaling_factor) else: self.freqs = torch.cat([ rope_params(1024, d - 4 * (d // 6)), rope_params(1024, 2 * (d // 6)), rope_params(1024, 2 * (d // 6)) ], dim=1) def set_gradient_checkpointing(self, enable: bool): self.gradient_checkpointing = enable def prepare_transformer_block_kwargs( self, x, t, context, seq_len, clip_fea=None, y=None, first_frame_is_clean=False, ): # params ## need to change! device = next(self.patch_embedding.parameters()).device if self.freqs.device != device: self.freqs = self.freqs.to(device) if y is not None: x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)] # embeddings x = [self.patch_embedding(u.unsqueeze(0)) for u in x] ## x is list of [B L D] or [B C F H W] if self.is_audio_type: # [B, 1] grid_sizes = torch.stack( [torch.tensor(u.shape[1:2], dtype=torch.long) for u in x] ) else: # [B, 3] grid_sizes = torch.stack( [torch.tensor(u.shape[2:], dtype=torch.long) for u in x]) x = [u.flatten(2).transpose(1, 2) for u in x] # [B C F H W] -> [B (F H W) C] -> [B L C] seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long) assert seq_lens.max() <= seq_len, f"Sequence length {seq_lens.max()} exceeds maximum {seq_len}." x = torch.cat([ torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1) for u in x ]) # single [B, L, C] # time embeddings if t.dim() == 1: if first_frame_is_clean: t = torch.ones((t.size(0), seq_len), device=t.device, dtype=t.dtype) * t.unsqueeze(1) _first_images_seq_len = grid_sizes[:, 1:].prod(-1) for i in range(t.size(0)): t[i, :_first_images_seq_len[i]] = 0 # print(f"zeroing out first {_first_images_seq_len} from t: {t.shape}, {t}") else: t = t.unsqueeze(1).expand(t.size(0), seq_len) with torch.amp.autocast('cuda', dtype=torch.bfloat16): bt = t.size(0) t = t.flatten() e = self.time_embedding( sinusoidal_embedding_1d(self.freq_dim, t).unflatten(0, (bt, seq_len)).bfloat16()) e0 = self.time_projection(e).unflatten(2, (6, self.dim)) # [1, 26784, 6, 3072] - B, seq_len, 6, dim assert e.dtype == torch.bfloat16 and e0.dtype == torch.bfloat16 if self.use_sp: current_len = x.shape[1] # we will pad up to the next multiple of sp_size: eg. [157] -> [160] pad_size = (-current_len ) % self.sp_size if pad_size > 0: padding = torch.zeros( x.shape[0], pad_size, x.shape[2], device=x.device, dtype=x.dtype ) x = torch.cat([x, padding], dim=1) e_padding = torch.zeros( e.shape[0], pad_size, e.shape[2], device=e.device, dtype=e.dtype ) e = torch.cat([e, e_padding], dim=1) e0_padding = torch.zeros( e0.shape[0], pad_size, e0.shape[2], e0.shape[3], device=e0.device, dtype=e0.dtype ) e0 = torch.cat([e0, e0_padding], dim=1) x = torch.chunk(x, self.sp_size, dim=1)[self.sp_rank] e = torch.chunk(e, self.sp_size, dim=1)[self.sp_rank] e0 = torch.chunk(e0, self.sp_size, dim=1)[self.sp_rank] # context context_lens = None context = self.text_embedding( torch.stack([ torch.cat( [u, u.new_zeros(self.text_len - u.size(0), u.size(1))]) for u in context ])) if clip_fea is not None: context_clip = self.img_emb(clip_fea) # bs x 257 x dim context = torch.concat([context_clip, context], dim=1) # arguments kwargs = dict( e=e0, seq_lens=seq_lens, grid_sizes=grid_sizes, freqs=self.freqs, context=context, context_lens=context_lens) return x, e, kwargs def post_transformer_block_out(self, x, grid_sizes, e): # head x = self.head(x, e) if self.use_sp: x = all_gather(x, dim=1) # unpatchify if self.is_audio_type: ## grid_sizes is [B 1] where 1 is L, # converting grid_sizes from [B 1] -> [B] grid_sizes = [gs[0] for gs in grid_sizes] assert len(x) == len(grid_sizes) x = [u[:gs] for u, gs in zip(x, grid_sizes)] else: ## grid_sizes is [B 3] where 3 is F H w x = self.unpatchify(x, grid_sizes) return [u.bfloat16() for u in x] def forward( self, x, t, context, seq_len, clip_fea=None, y=None, first_frame_is_clean=False ): r""" Forward pass through the diffusion model Args: x (List[Tensor]): List of input video tensors, each with shape [C_in, F, H, W] OR List of input audio tensors, each with shape [L, C_in] t (Tensor): Diffusion timesteps tensor of shape [B] context (List[Tensor]): List of text embeddings each with shape [L, C] seq_len (`int`): Maximum sequence length for positional encoding clip_fea (Tensor, *optional*): CLIP image features for image-to-video mode y (List[Tensor], *optional*): Conditional video inputs for image-to-video mode, same shape as x Returns: List[Tensor]: List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] OR List of denoised audio tensors with original input shapes [L, C_in] """ x, e, kwargs = self.prepare_transformer_block_kwargs( x=x, t=t, context=context, seq_len=seq_len, clip_fea=clip_fea, y=y, first_frame_is_clean=first_frame_is_clean ) for block in self.blocks: x = gradient_checkpointing( enabled=(self.training and self.gradient_checkpointing), module=block, x=x, **kwargs ) return self.post_transformer_block_out(x, kwargs['grid_sizes'], e) def unpatchify(self, x, grid_sizes): r""" Reconstruct video tensors from patch embeddings. Args: x (List[Tensor]): List of patchified features, each with shape [L, C_out * prod(patch_size)] grid_sizes (Tensor): Original spatial-temporal grid dimensions before patching, shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) Returns: List[Tensor]: Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] """ c = self.out_dim out = [] for u, v in zip(x, grid_sizes.tolist()): # v is [F H w] F * H * 80, 100, it was right padded by 20. u = u[:math.prod(v)].view(*v, *self.patch_size, c) u = torch.einsum('fhwpqrc->cfphqwr', u) u = u.reshape(c, *[i * j for i, j in zip(v, self.patch_size)]) out.append(u) # out is list of [C F H W] return out def init_weights(self): r""" Initialize model parameters using Xavier initialization. """ # basic init for m in self.modules(): if isinstance(m, nn.Linear): nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.zeros_(m.bias) # init embeddings if self.is_video_type: assert isinstance(self.patch_embedding, nn.Conv3d), f"Patch embedding for video should be a Conv3d layer, got {type(self.patch_embedding)}" nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) for m in self.text_embedding.modules(): if isinstance(m, nn.Linear): nn.init.normal_(m.weight, std=.02) for m in self.time_embedding.modules(): if isinstance(m, nn.Linear): nn.init.normal_(m.weight, std=.02) # init output layer nn.init.zeros_(self.head.head.weight)