Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +212 -45
- requirements.txt +2 -0
app.py
CHANGED
|
@@ -2,19 +2,29 @@ import gradio as gr
|
|
| 2 |
import pandas as pd
|
| 3 |
import requests
|
| 4 |
import json
|
| 5 |
-
from transformers import pipeline
|
|
|
|
| 6 |
import time
|
| 7 |
from typing import List, Dict, Tuple
|
| 8 |
import re
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
# Initialize
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
classifier = pipeline(
|
| 13 |
-
"
|
| 14 |
-
model="
|
| 15 |
-
return_all_scores=True
|
| 16 |
)
|
| 17 |
|
|
|
|
|
|
|
| 18 |
def parse_csv_file(file) -> pd.DataFrame:
|
| 19 |
"""Parse uploaded CSV file and return DataFrame"""
|
| 20 |
try:
|
|
@@ -79,53 +89,210 @@ Reasoning: [Provide specific reasons based on the criteria]
|
|
| 79 |
"""
|
| 80 |
return prompt
|
| 81 |
|
| 82 |
-
def
|
| 83 |
-
"""
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
|
| 86 |
-
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
# Parse criteria to extract keywords (simplified)
|
| 95 |
-
criteria_lines = criteria.lower().split('\n')
|
| 96 |
-
for line in criteria_lines:
|
| 97 |
if 'include' in line and ':' in line:
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
| 100 |
elif 'exclude' in line and ':' in line:
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
decision = "INCLUDE"
|
| 117 |
-
confidence = min(70 + include_score * 5, 90)
|
| 118 |
-
reasoning = f"Matches inclusion criteria: {', '.join([kw for kw in include_keywords if kw in study_text_lower])}"
|
| 119 |
-
else:
|
| 120 |
-
decision = "UNCLEAR"
|
| 121 |
-
confidence = 50
|
| 122 |
-
reasoning = "Insufficient information to make clear determination"
|
| 123 |
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
def process_studies(file, title_col, abstract_col, criteria, sample_size):
|
| 131 |
"""Main processing function"""
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import requests
|
| 4 |
import json
|
| 5 |
+
from transformers import pipeline, AutoTokenizer, AutoModel
|
| 6 |
+
import torch
|
| 7 |
import time
|
| 8 |
from typing import List, Dict, Tuple
|
| 9 |
import re
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
+
import numpy as np
|
| 12 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 13 |
|
| 14 |
+
# Initialize multiple models for different approaches
|
| 15 |
+
print("Loading models...")
|
| 16 |
+
|
| 17 |
+
# For semantic similarity matching
|
| 18 |
+
sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 19 |
+
|
| 20 |
+
# For zero-shot classification
|
| 21 |
classifier = pipeline(
|
| 22 |
+
"zero-shot-classification",
|
| 23 |
+
model="facebook/bart-large-mnli"
|
|
|
|
| 24 |
)
|
| 25 |
|
| 26 |
+
print("Models loaded successfully!")
|
| 27 |
+
|
| 28 |
def parse_csv_file(file) -> pd.DataFrame:
|
| 29 |
"""Parse uploaded CSV file and return DataFrame"""
|
| 30 |
try:
|
|
|
|
| 89 |
"""
|
| 90 |
return prompt
|
| 91 |
|
| 92 |
+
def parse_criteria(criteria_text: str) -> Dict[str, List[str]]:
|
| 93 |
+
"""Parse inclusion/exclusion criteria into structured format"""
|
| 94 |
+
include_terms = []
|
| 95 |
+
exclude_terms = []
|
| 96 |
|
| 97 |
+
lines = criteria_text.lower().split('\n')
|
| 98 |
+
current_section = None
|
| 99 |
|
| 100 |
+
for line in lines:
|
| 101 |
+
line = line.strip()
|
| 102 |
+
if not line:
|
| 103 |
+
continue
|
| 104 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
if 'include' in line and ':' in line:
|
| 106 |
+
current_section = 'include'
|
| 107 |
+
# Extract terms after the colon
|
| 108 |
+
terms = line.split(':')[1].strip()
|
| 109 |
+
if terms:
|
| 110 |
+
include_terms.extend([t.strip() for t in terms.split(',') if t.strip()])
|
| 111 |
elif 'exclude' in line and ':' in line:
|
| 112 |
+
current_section = 'exclude'
|
| 113 |
+
terms = line.split(':')[1].strip()
|
| 114 |
+
if terms:
|
| 115 |
+
exclude_terms.extend([t.strip() for t in terms.split(',') if t.strip()])
|
| 116 |
+
elif current_section and line.startswith('-'):
|
| 117 |
+
# Handle bullet points
|
| 118 |
+
term = line[1:].strip()
|
| 119 |
+
if term:
|
| 120 |
+
if current_section == 'include':
|
| 121 |
+
include_terms.append(term)
|
| 122 |
+
else:
|
| 123 |
+
exclude_terms.append(term)
|
| 124 |
+
elif current_section and not line.startswith(('include', 'exclude')):
|
| 125 |
+
# Handle continuation lines
|
| 126 |
+
if line:
|
| 127 |
+
if current_section == 'include':
|
| 128 |
+
include_terms.extend([t.strip() for t in line.split(',') if t.strip()])
|
| 129 |
+
else:
|
| 130 |
+
exclude_terms.extend([t.strip() for t in line.split(',') if t.strip()])
|
| 131 |
|
| 132 |
+
return {
|
| 133 |
+
'include': [term for term in include_terms if len(term) > 2], # Filter very short terms
|
| 134 |
+
'exclude': [term for term in exclude_terms if len(term) > 2]
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
def classify_with_semantic_similarity(title: str, abstract: str, criteria: Dict) -> Dict:
|
| 138 |
+
"""Use semantic similarity to classify studies"""
|
| 139 |
|
| 140 |
+
# Combine title and abstract
|
| 141 |
+
study_text = f"{title} {abstract}".strip()
|
| 142 |
|
| 143 |
+
if not study_text or len(study_text) < 10:
|
| 144 |
+
return {
|
| 145 |
+
'decision': 'UNCLEAR',
|
| 146 |
+
'confidence': 30,
|
| 147 |
+
'reasoning': 'Insufficient text for analysis'
|
| 148 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
try:
|
| 151 |
+
# Get embeddings for the study
|
| 152 |
+
study_embedding = sentence_model.encode([study_text])
|
| 153 |
+
|
| 154 |
+
include_scores = []
|
| 155 |
+
exclude_scores = []
|
| 156 |
+
|
| 157 |
+
# Calculate similarity with inclusion criteria
|
| 158 |
+
if criteria['include']:
|
| 159 |
+
include_embeddings = sentence_model.encode(criteria['include'])
|
| 160 |
+
include_similarities = cosine_similarity(study_embedding, include_embeddings)[0]
|
| 161 |
+
include_scores = include_similarities.tolist()
|
| 162 |
+
|
| 163 |
+
# Calculate similarity with exclusion criteria
|
| 164 |
+
if criteria['exclude']:
|
| 165 |
+
exclude_embeddings = sentence_model.encode(criteria['exclude'])
|
| 166 |
+
exclude_similarities = cosine_similarity(study_embedding, exclude_embeddings)[0]
|
| 167 |
+
exclude_scores = exclude_similarities.tolist()
|
| 168 |
+
|
| 169 |
+
# Decision logic
|
| 170 |
+
max_include_score = max(include_scores) if include_scores else 0
|
| 171 |
+
max_exclude_score = max(exclude_scores) if exclude_scores else 0
|
| 172 |
+
|
| 173 |
+
# Find which criteria matched best
|
| 174 |
+
include_reasons = []
|
| 175 |
+
exclude_reasons = []
|
| 176 |
+
|
| 177 |
+
if include_scores:
|
| 178 |
+
best_include_idx = np.argmax(include_scores)
|
| 179 |
+
if include_scores[best_include_idx] > 0.3: # Threshold for meaningful similarity
|
| 180 |
+
include_reasons.append(f"Similar to: '{criteria['include'][best_include_idx]}'")
|
| 181 |
+
|
| 182 |
+
if exclude_scores:
|
| 183 |
+
best_exclude_idx = np.argmax(exclude_scores)
|
| 184 |
+
if exclude_scores[best_exclude_idx] > 0.3:
|
| 185 |
+
exclude_reasons.append(f"Similar to: '{criteria['exclude'][best_exclude_idx]}'")
|
| 186 |
+
|
| 187 |
+
# Make decision
|
| 188 |
+
if max_exclude_score > 0.4: # Strong exclusion match
|
| 189 |
+
decision = 'EXCLUDE'
|
| 190 |
+
confidence = min(int(max_exclude_score * 100), 95)
|
| 191 |
+
reasoning = f"Strong match with exclusion criteria. {'; '.join(exclude_reasons)}"
|
| 192 |
+
elif max_include_score > 0.4: # Strong inclusion match
|
| 193 |
+
decision = 'INCLUDE'
|
| 194 |
+
confidence = min(int(max_include_score * 100), 90)
|
| 195 |
+
reasoning = f"Strong match with inclusion criteria. {'; '.join(include_reasons)}"
|
| 196 |
+
elif max_include_score > 0.25: # Moderate inclusion match
|
| 197 |
+
decision = 'INCLUDE'
|
| 198 |
+
confidence = min(int(max_include_score * 80), 75)
|
| 199 |
+
reasoning = f"Moderate match with inclusion criteria. {'; '.join(include_reasons)}"
|
| 200 |
+
else:
|
| 201 |
+
decision = 'UNCLEAR'
|
| 202 |
+
confidence = 40
|
| 203 |
+
reasoning = f"No strong matches found. Best include: {max_include_score:.2f}, Best exclude: {max_exclude_score:.2f}"
|
| 204 |
+
|
| 205 |
+
return {
|
| 206 |
+
'decision': decision,
|
| 207 |
+
'confidence': confidence,
|
| 208 |
+
'reasoning': reasoning
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
except Exception as e:
|
| 212 |
+
return {
|
| 213 |
+
'decision': 'UNCLEAR',
|
| 214 |
+
'confidence': 30,
|
| 215 |
+
'reasoning': f'Error in semantic analysis: {str(e)}'
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
def classify_with_zero_shot(title: str, abstract: str, criteria_text: str) -> Dict:
|
| 219 |
+
"""Use zero-shot classification as a secondary method"""
|
| 220 |
+
|
| 221 |
+
study_text = f"{title} {abstract}".strip()
|
| 222 |
+
|
| 223 |
+
if not study_text or len(study_text) < 10:
|
| 224 |
+
return None
|
| 225 |
+
|
| 226 |
+
try:
|
| 227 |
+
# Create labels from criteria
|
| 228 |
+
candidate_labels = ["should be included in systematic review", "should be excluded from systematic review"]
|
| 229 |
+
|
| 230 |
+
# Use the criteria as hypothesis
|
| 231 |
+
hypothesis_template = f"This study {{}}, based on the criteria: {criteria_text}"
|
| 232 |
+
|
| 233 |
+
result = classifier(study_text, candidate_labels, hypothesis_template=hypothesis_template)
|
| 234 |
+
|
| 235 |
+
top_label = result['labels'][0]
|
| 236 |
+
top_score = result['scores'][0]
|
| 237 |
+
|
| 238 |
+
if 'included' in top_label:
|
| 239 |
+
decision = 'INCLUDE'
|
| 240 |
+
else:
|
| 241 |
+
decision = 'EXCLUDE'
|
| 242 |
+
|
| 243 |
+
confidence = int(top_score * 100)
|
| 244 |
+
reasoning = f"Zero-shot classification: {top_label} (confidence: {confidence}%)"
|
| 245 |
+
|
| 246 |
+
return {
|
| 247 |
+
'decision': decision,
|
| 248 |
+
'confidence': confidence,
|
| 249 |
+
'reasoning': reasoning
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
except Exception as e:
|
| 253 |
+
return None
|
| 254 |
+
|
| 255 |
+
def classify_single_study(title: str, abstract: str, criteria_text: str) -> Dict:
|
| 256 |
+
"""Enhanced classification using multiple approaches"""
|
| 257 |
+
|
| 258 |
+
# Parse criteria
|
| 259 |
+
parsed_criteria = parse_criteria(criteria_text)
|
| 260 |
+
|
| 261 |
+
if not parsed_criteria['include'] and not parsed_criteria['exclude']:
|
| 262 |
+
return {
|
| 263 |
+
'decision': 'UNCLEAR',
|
| 264 |
+
'confidence': 20,
|
| 265 |
+
'reasoning': 'No clear inclusion/exclusion criteria provided'
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
# Method 1: Semantic similarity
|
| 269 |
+
semantic_result = classify_with_semantic_similarity(title, abstract, parsed_criteria)
|
| 270 |
+
|
| 271 |
+
# Method 2: Zero-shot classification (as backup)
|
| 272 |
+
zero_shot_result = classify_with_zero_shot(title, abstract, criteria_text)
|
| 273 |
+
|
| 274 |
+
# Combine results (prioritize semantic similarity)
|
| 275 |
+
if semantic_result['confidence'] > 60:
|
| 276 |
+
return semantic_result
|
| 277 |
+
elif zero_shot_result and zero_shot_result['confidence'] > 70:
|
| 278 |
+
return zero_shot_result
|
| 279 |
+
elif semantic_result['confidence'] > 40:
|
| 280 |
+
# Add zero-shot info if available
|
| 281 |
+
combined_reasoning = semantic_result['reasoning']
|
| 282 |
+
if zero_shot_result:
|
| 283 |
+
combined_reasoning += f" | {zero_shot_result['reasoning']}"
|
| 284 |
+
|
| 285 |
+
return {
|
| 286 |
+
'decision': semantic_result['decision'],
|
| 287 |
+
'confidence': semantic_result['confidence'],
|
| 288 |
+
'reasoning': combined_reasoning
|
| 289 |
+
}
|
| 290 |
+
else:
|
| 291 |
+
return {
|
| 292 |
+
'decision': 'UNCLEAR',
|
| 293 |
+
'confidence': 35,
|
| 294 |
+
'reasoning': 'Low confidence from all classification methods'
|
| 295 |
+
}
|
| 296 |
|
| 297 |
def process_studies(file, title_col, abstract_col, criteria, sample_size):
|
| 298 |
"""Main processing function"""
|
requirements.txt
CHANGED
|
@@ -4,3 +4,5 @@ transformers==4.36.2
|
|
| 4 |
torch==2.1.2
|
| 5 |
requests==2.31.0
|
| 6 |
numpy==1.24.3
|
|
|
|
|
|
|
|
|
| 4 |
torch==2.1.2
|
| 5 |
requests==2.31.0
|
| 6 |
numpy==1.24.3
|
| 7 |
+
sentence-transformers==2.2.2
|
| 8 |
+
scikit-learn==1.3.2
|