Spaces:
Running
Running
| import gc | |
| import numpy as np | |
| import PIL.Image | |
| import torch | |
| from controlnet_aux import ( | |
| CannyDetector, | |
| ContentShuffleDetector, | |
| HEDdetector, | |
| LineartAnimeDetector, | |
| LineartDetector, | |
| MidasDetector, | |
| MLSDdetector, | |
| NormalBaeDetector, | |
| OpenposeDetector, | |
| PidiNetDetector, | |
| ) | |
| from controlnet_aux.util import HWC3 | |
| from cv_utils import resize_image | |
| from depth_estimator import DepthEstimator | |
| from image_segmentor import ImageSegmentor, ImageSegmentorOneFormer | |
| class Preprocessor: | |
| MODEL_ID = "lllyasviel/Annotators" | |
| def __init__(self): | |
| self.model = None | |
| self.models = {} | |
| self.name = "" | |
| def load(self, name: str) -> None: | |
| if name == self.name: | |
| return | |
| if name in self.models: | |
| self.name = name | |
| self.model = self.models[name] | |
| return | |
| if name == "HED": | |
| self.model = HEDdetector.from_pretrained(self.MODEL_ID) | |
| elif name == "Midas": | |
| self.model = MidasDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "MLSD": | |
| self.model = MLSDdetector.from_pretrained(self.MODEL_ID) | |
| elif name == "Openpose": | |
| self.model = OpenposeDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "PidiNet": | |
| self.model = PidiNetDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "NormalBae": | |
| self.model = NormalBaeDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "Lineart": | |
| self.model = LineartDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "LineartAnime": | |
| self.model = LineartAnimeDetector.from_pretrained(self.MODEL_ID) | |
| elif name == "Canny": | |
| self.model = CannyDetector() | |
| elif name == "ContentShuffle": | |
| self.model = ContentShuffleDetector() | |
| elif name == "DPT": | |
| self.model = DepthEstimator() | |
| elif name == "UPerNet": | |
| self.model = ImageSegmentor() | |
| elif name == "OneFormer": | |
| self.model = ImageSegmentorOneFormer() | |
| else: | |
| raise ValueError | |
| # if torch.cuda.is_available(): | |
| # torch.cuda.empty_cache() | |
| # gc.collect() | |
| self.name = name | |
| self.models[name] = self.model | |
| def __call__(self, image: PIL.Image.Image, **kwargs) -> PIL.Image.Image: | |
| if self.name == "Canny": | |
| if "detect_resolution" in kwargs: | |
| detect_resolution = kwargs.pop("detect_resolution") | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=detect_resolution) | |
| image = self.model(image, **kwargs) | |
| return PIL.Image.fromarray(image) | |
| elif self.name == "Midas": | |
| detect_resolution = kwargs.pop("detect_resolution", 512) | |
| image_resolution = kwargs.pop("image_resolution", 512) | |
| image = np.array(image) | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=detect_resolution) | |
| image = self.model(image, **kwargs) | |
| if isinstance(image, tuple): | |
| image = image[-1][...,::-1] # normal old | |
| image = HWC3(image) | |
| image = resize_image(image, resolution=image_resolution) | |
| return PIL.Image.fromarray(image) | |
| else: | |
| return self.model(image, **kwargs) | |