Spaces:
Running
Running
fix button label kwarg
Browse files- app_openpose.py +1 -1
- model.py +16 -13
app_openpose.py
CHANGED
|
@@ -18,7 +18,7 @@ def create_demo(process):
|
|
| 18 |
with gr.Column():
|
| 19 |
image = gr.Image()
|
| 20 |
prompt = gr.Textbox(label="Prompt")
|
| 21 |
-
run_button = gr.Button(
|
| 22 |
with gr.Accordion("Advanced options", open=False):
|
| 23 |
preprocessor_name = gr.Radio(
|
| 24 |
label="Preprocessor", choices=["Openpose", "None"], type="value", value="Openpose"
|
|
|
|
| 18 |
with gr.Column():
|
| 19 |
image = gr.Image()
|
| 20 |
prompt = gr.Textbox(label="Prompt")
|
| 21 |
+
run_button = gr.Button("Run")
|
| 22 |
with gr.Accordion("Advanced options", open=False):
|
| 23 |
preprocessor_name = gr.Radio(
|
| 24 |
label="Preprocessor", choices=["Openpose", "None"], type="value", value="Openpose"
|
model.py
CHANGED
|
@@ -47,11 +47,11 @@ class Model:
|
|
| 47 |
unet.set_adapter(task_name)
|
| 48 |
return self.pipe
|
| 49 |
unet: UNet2DConditionModelEx = UNet2DConditionModelEx.from_pretrained(
|
| 50 |
-
base_model_id, subfolder="unet", torch_dtype=torch.float16
|
| 51 |
)
|
| 52 |
unet.add_extra_conditions(["Placeholder"])
|
| 53 |
pipe: StableDiffusionControlLoraV3Pipeline = StableDiffusionControlLoraV3Pipeline.from_pretrained(
|
| 54 |
-
base_model_id, safety_checker=None, unet=unet, torch_dtype=torch.float16
|
| 55 |
)
|
| 56 |
for _task_name, subfolder in CONTROL_LORA_V3_MODEL_IDS.items():
|
| 57 |
pipe.load_lora_weights("HighCWu/control-lora-v3", adapter_name=_task_name, subfolder=subfolder)
|
|
@@ -92,7 +92,6 @@ class Model:
|
|
| 92 |
prompt = f"{prompt}, {additional_prompt}"
|
| 93 |
return prompt
|
| 94 |
|
| 95 |
-
# @torch.autocast("cuda")
|
| 96 |
def run_pipe(
|
| 97 |
self,
|
| 98 |
prompt: str,
|
|
@@ -103,16 +102,20 @@ class Model:
|
|
| 103 |
guidance_scale: float,
|
| 104 |
seed: int,
|
| 105 |
) -> list[PIL.Image.Image]:
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
@torch.inference_mode()
|
| 118 |
def process_canny(
|
|
|
|
| 47 |
unet.set_adapter(task_name)
|
| 48 |
return self.pipe
|
| 49 |
unet: UNet2DConditionModelEx = UNet2DConditionModelEx.from_pretrained(
|
| 50 |
+
base_model_id, subfolder="unet", torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32
|
| 51 |
)
|
| 52 |
unet.add_extra_conditions(["Placeholder"])
|
| 53 |
pipe: StableDiffusionControlLoraV3Pipeline = StableDiffusionControlLoraV3Pipeline.from_pretrained(
|
| 54 |
+
base_model_id, safety_checker=None, unet=unet, torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32
|
| 55 |
)
|
| 56 |
for _task_name, subfolder in CONTROL_LORA_V3_MODEL_IDS.items():
|
| 57 |
pipe.load_lora_weights("HighCWu/control-lora-v3", adapter_name=_task_name, subfolder=subfolder)
|
|
|
|
| 92 |
prompt = f"{prompt}, {additional_prompt}"
|
| 93 |
return prompt
|
| 94 |
|
|
|
|
| 95 |
def run_pipe(
|
| 96 |
self,
|
| 97 |
prompt: str,
|
|
|
|
| 102 |
guidance_scale: float,
|
| 103 |
seed: int,
|
| 104 |
) -> list[PIL.Image.Image]:
|
| 105 |
+
def run():
|
| 106 |
+
generator = torch.Generator().manual_seed(seed)
|
| 107 |
+
return self.pipe(
|
| 108 |
+
prompt=prompt,
|
| 109 |
+
negative_prompt=negative_prompt,
|
| 110 |
+
guidance_scale=guidance_scale,
|
| 111 |
+
num_images_per_prompt=num_images,
|
| 112 |
+
num_inference_steps=num_steps,
|
| 113 |
+
generator=generator,
|
| 114 |
+
image=control_image,
|
| 115 |
+
).images
|
| 116 |
+
if self.device.type == "cuda":
|
| 117 |
+
run = torch.autocast("cuda")(run)
|
| 118 |
+
return run()
|
| 119 |
|
| 120 |
@torch.inference_mode()
|
| 121 |
def process_canny(
|