Spaces:
Sleeping
Sleeping
init app
Browse files- app.py +407 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import random
|
| 3 |
+
import re
|
| 4 |
+
import threading
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
import spaces
|
| 8 |
+
import torch
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
# Assuming the transformers library is installed
|
| 12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
| 13 |
+
|
| 14 |
+
# --- Global Settings ---
|
| 15 |
+
# These variables are placed in the global scope and will be loaded once when the Gradio app starts
|
| 16 |
+
system_prompt = []
|
| 17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 18 |
+
|
| 19 |
+
MODEL_PATHS = {
|
| 20 |
+
"Embformer-MiniMind-Base (0.1B)": ["HighCWu/Embformer-MiniMind-Base-0.1B", "Embformer-MiniMind-Base-0.1B"],
|
| 21 |
+
"Embformer-MiniMind-Seqlen512 (0.1B)": ["HighCWu/Embformer-MiniMind-Seqlen512-0.1B", "Embformer-MiniMind-Seqlen512-0.1B"],
|
| 22 |
+
"Embformer-MiniMind (0.1B)": ["HighCWu/Embformer-MiniMind-0.1B", "Embformer-MiniMind-0.1B"],
|
| 23 |
+
"Embformer-MiniMind-RLHF (0.1B)": ["HighCWu/Embformer-MiniMind-RLHF-0.1B", "Embformer-MiniMind-RLHF-0.1B"],
|
| 24 |
+
"Embformer-MiniMind-R1 (0.1B)": ["HighCWu/Embformer-MiniMind-R1-0.1B", "Embformer-MiniMind-R1-0.1B"],
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
# --- Helper Functions (Mostly unchanged) ---
|
| 28 |
+
|
| 29 |
+
def process_assistant_content(content, model_source, selected_model_name):
|
| 30 |
+
"""
|
| 31 |
+
Processes the model output, converting <think> tags to HTML details elements,
|
| 32 |
+
and handling content after </think>, filtering out <answer> tags.
|
| 33 |
+
"""
|
| 34 |
+
is_r1_model = False
|
| 35 |
+
if model_source == "API":
|
| 36 |
+
if 'R1' in selected_model_name:
|
| 37 |
+
is_r1_model = True
|
| 38 |
+
else:
|
| 39 |
+
model_identifier = MODEL_PATHS.get(selected_model_name, ["", ""])[1]
|
| 40 |
+
if 'R1' in model_identifier:
|
| 41 |
+
is_r1_model = True
|
| 42 |
+
|
| 43 |
+
if not is_r1_model:
|
| 44 |
+
return content
|
| 45 |
+
|
| 46 |
+
# Fully closed <think>...</think> block
|
| 47 |
+
if '<think>' in content and '</think>' in content:
|
| 48 |
+
# Using re.split is more robust than finding indices
|
| 49 |
+
parts = re.split(r'(</think>)', content, 1)
|
| 50 |
+
think_part = parts[0] + parts[1] # All content from <think> to </think>
|
| 51 |
+
after_think_part = parts[2] if len(parts) > 2 else ""
|
| 52 |
+
|
| 53 |
+
# 1. Process the think part
|
| 54 |
+
processed_think = re.sub(
|
| 55 |
+
r'(<think>)(.*?)(</think>)',
|
| 56 |
+
r'<details style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">Reasoning (Click to expand)</summary>\2</details>',
|
| 57 |
+
think_part,
|
| 58 |
+
flags=re.DOTALL
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# 2. Process the part after </think>, filtering <answer> tags
|
| 62 |
+
# Using re.sub to replace <answer> and </answer> with an empty string
|
| 63 |
+
processed_after_think = re.sub(r'</?answer>', '', after_think_part)
|
| 64 |
+
|
| 65 |
+
# 3. Concatenate the results
|
| 66 |
+
return processed_think + processed_after_think
|
| 67 |
+
|
| 68 |
+
# Only an opening <think>, indicating reasoning is in progress
|
| 69 |
+
if '<think>' in content and '</think>' not in content:
|
| 70 |
+
return re.sub(
|
| 71 |
+
r'<think>(.*?)$',
|
| 72 |
+
r'<details open style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">Reasoning...</summary>\1</details>',
|
| 73 |
+
content,
|
| 74 |
+
flags=re.DOTALL
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# This case should be rare in streaming output, but kept for completeness
|
| 78 |
+
if '<think>' not in content and '</think>' in content:
|
| 79 |
+
# Also need to process content after </think>
|
| 80 |
+
parts = re.split(r'(</think>)', content, 1)
|
| 81 |
+
think_part = parts[0] + parts[1]
|
| 82 |
+
after_think_part = parts[2] if len(parts) > 2 else ""
|
| 83 |
+
|
| 84 |
+
processed_think = re.sub(
|
| 85 |
+
r'(.*?)</think>',
|
| 86 |
+
r'<details style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">Reasoning (Click to expand)</summary>\1</details>',
|
| 87 |
+
think_part,
|
| 88 |
+
flags=re.DOTALL
|
| 89 |
+
)
|
| 90 |
+
processed_after_think = re.sub(r'</?answer>', '', after_think_part)
|
| 91 |
+
|
| 92 |
+
return processed_think + processed_after_think
|
| 93 |
+
|
| 94 |
+
# If there are no <think> tags, return the content directly
|
| 95 |
+
return content
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def setup_seed(seed):
|
| 99 |
+
random.seed(seed)
|
| 100 |
+
np.random.seed(seed)
|
| 101 |
+
torch.manual_seed(seed)
|
| 102 |
+
if device != "cpu":
|
| 103 |
+
torch.cuda.manual_seed(seed)
|
| 104 |
+
torch.cuda.manual_seed_all(seed)
|
| 105 |
+
torch.backends.cudnn.deterministic = True
|
| 106 |
+
torch.backends.cudnn.benchmark = False
|
| 107 |
+
|
| 108 |
+
# --- Gradio App Logic ---
|
| 109 |
+
|
| 110 |
+
# Gradio uses global variables or functions to load models, similar to st.cache_resource
|
| 111 |
+
# We cache models and tokenizers in a dictionary to avoid reloading
|
| 112 |
+
loaded_models = {}
|
| 113 |
+
|
| 114 |
+
def load_model_tokenizer_gradio(model_name):
|
| 115 |
+
"""
|
| 116 |
+
Gradio version of the model loading function with caching.
|
| 117 |
+
"""
|
| 118 |
+
if model_name in loaded_models:
|
| 119 |
+
# print(f"Using cached model: {model_name}")
|
| 120 |
+
return loaded_models[model_name]
|
| 121 |
+
|
| 122 |
+
# print(f"Loading model: {model_name}...")
|
| 123 |
+
model_path = MODEL_PATHS[model_name][0]
|
| 124 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 125 |
+
model_path,
|
| 126 |
+
trust_remote_code=True,
|
| 127 |
+
cache_dir=".cache",
|
| 128 |
+
).to(device).eval()
|
| 129 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 130 |
+
model_path,
|
| 131 |
+
trust_remote_code=True,
|
| 132 |
+
cache_dir=".cache",
|
| 133 |
+
)
|
| 134 |
+
loaded_models[model_name] = (model, tokenizer)
|
| 135 |
+
print("Model loaded.")
|
| 136 |
+
return model, tokenizer
|
| 137 |
+
|
| 138 |
+
@spaces.GPU
|
| 139 |
+
def chat_fn(
|
| 140 |
+
user_message,
|
| 141 |
+
history,
|
| 142 |
+
model_source,
|
| 143 |
+
# Local model settings
|
| 144 |
+
selected_model,
|
| 145 |
+
# API settings
|
| 146 |
+
api_url,
|
| 147 |
+
api_model_id,
|
| 148 |
+
api_model_name,
|
| 149 |
+
api_key,
|
| 150 |
+
# Generation parameters
|
| 151 |
+
history_chat_num,
|
| 152 |
+
max_new_tokens,
|
| 153 |
+
temperature
|
| 154 |
+
):
|
| 155 |
+
"""
|
| 156 |
+
Gradio's core chat processing function.
|
| 157 |
+
It receives the current values of all UI components as input.
|
| 158 |
+
"""
|
| 159 |
+
history = history or []
|
| 160 |
+
|
| 161 |
+
# Build context for the model based on the passed, unmodified history
|
| 162 |
+
chat_messages_for_model = []
|
| 163 |
+
# Limit the number of history turns
|
| 164 |
+
if history_chat_num > 0 and len(history) > history_chat_num:
|
| 165 |
+
relevant_history_turns = history[-history_chat_num:]
|
| 166 |
+
else:
|
| 167 |
+
relevant_history_turns = history
|
| 168 |
+
|
| 169 |
+
for user_msg, assistant_msg in relevant_history_turns:
|
| 170 |
+
chat_messages_for_model.append({"role": "user", "content": user_msg})
|
| 171 |
+
if assistant_msg:
|
| 172 |
+
chat_messages_for_model.append({"role": "assistant", "content": assistant_msg})
|
| 173 |
+
|
| 174 |
+
# Add the current user message to the model's context
|
| 175 |
+
chat_messages_for_model.append({"role": "user", "content": user_message})
|
| 176 |
+
|
| 177 |
+
final_chat_messages = system_prompt + chat_messages_for_model
|
| 178 |
+
|
| 179 |
+
# Now, update the history for UI display
|
| 180 |
+
history.extend([*chat_messages_for_model, {"role": "assistant", "content": user_message}])
|
| 181 |
+
|
| 182 |
+
# --- Model Invocation ---
|
| 183 |
+
if model_source == "API":
|
| 184 |
+
try:
|
| 185 |
+
from openai import OpenAI
|
| 186 |
+
client = OpenAI(api_key=api_key, base_url=api_url)
|
| 187 |
+
|
| 188 |
+
response = client.chat.completions.create(
|
| 189 |
+
model=api_model_id,
|
| 190 |
+
messages=final_chat_messages,
|
| 191 |
+
stream=True,
|
| 192 |
+
temperature=temperature
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
answer = ""
|
| 196 |
+
for chunk in response:
|
| 197 |
+
content = chunk.choices[0].delta.content or ""
|
| 198 |
+
answer += content
|
| 199 |
+
processed_answer = process_assistant_content(answer, model_source, api_model_name)
|
| 200 |
+
history[-1]["content"] = processed_answer
|
| 201 |
+
yield history, history
|
| 202 |
+
|
| 203 |
+
except Exception as e:
|
| 204 |
+
history[-1]["content"] = f"API call error: {str(e)}"
|
| 205 |
+
yield history, history
|
| 206 |
+
|
| 207 |
+
else: # Local Model
|
| 208 |
+
try:
|
| 209 |
+
model, tokenizer = load_model_tokenizer_gradio(selected_model)
|
| 210 |
+
|
| 211 |
+
random_seed = random.randint(0, 2**32 - 1)
|
| 212 |
+
setup_seed(random_seed)
|
| 213 |
+
|
| 214 |
+
new_prompt = tokenizer.apply_chat_template(
|
| 215 |
+
final_chat_messages,
|
| 216 |
+
tokenize=False,
|
| 217 |
+
add_generation_prompt=True
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
inputs = tokenizer(new_prompt, return_tensors="pt", truncation=True).to(device)
|
| 221 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 222 |
+
|
| 223 |
+
generation_kwargs = {
|
| 224 |
+
"input_ids": inputs.input_ids,
|
| 225 |
+
"attention_mask": inputs.attention_mask,
|
| 226 |
+
"max_new_tokens": max_new_tokens,
|
| 227 |
+
"num_return_sequences": 1,
|
| 228 |
+
"do_sample": True,
|
| 229 |
+
"pad_token_id": tokenizer.pad_token_id,
|
| 230 |
+
"eos_token_id": tokenizer.eos_token_id,
|
| 231 |
+
"temperature": temperature,
|
| 232 |
+
"top_p": 0.85,
|
| 233 |
+
"streamer": streamer,
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
| 237 |
+
thread.start()
|
| 238 |
+
|
| 239 |
+
answer = ""
|
| 240 |
+
for new_text in streamer:
|
| 241 |
+
answer += new_text
|
| 242 |
+
processed_answer = process_assistant_content(answer, model_source, selected_model)
|
| 243 |
+
history[-1]["content"] = processed_answer
|
| 244 |
+
yield history, history
|
| 245 |
+
except Exception as e:
|
| 246 |
+
history[-1]["content"] = f"Local model call error: {str(e)}"
|
| 247 |
+
yield history, history
|
| 248 |
+
|
| 249 |
+
# --- Gradio UI Layout ---
|
| 250 |
+
css = """
|
| 251 |
+
.gradio-container { font-family: 'sans-serif'; }
|
| 252 |
+
footer { display: none !important; }
|
| 253 |
+
"""
|
| 254 |
+
image_url = "https://chunte-hfba.static.hf.space/images/modern%20Huggies/Huggy%20Sunny%20hello.png"
|
| 255 |
+
|
| 256 |
+
# Define example data
|
| 257 |
+
prompt_datas = [
|
| 258 |
+
'请介绍一下自己。',
|
| 259 |
+
'你更擅长哪一个学科?',
|
| 260 |
+
'鲁迅的《狂人日记》是如何批判封建礼教的?',
|
| 261 |
+
'我咳嗽已经持续了两周,需要去医院检查吗?',
|
| 262 |
+
'详细的介绍光速的物理概念。',
|
| 263 |
+
'推荐一些杭州的特色美食吧。',
|
| 264 |
+
'请为我讲解“大语言模型”这个概念。',
|
| 265 |
+
'如何理解ChatGPT?',
|
| 266 |
+
'Introduce the history of the United States, please.'
|
| 267 |
+
]
|
| 268 |
+
|
| 269 |
+
with gr.Blocks(theme='soft', css=css) as demo:
|
| 270 |
+
# History state, this is the Gradio equivalent of st.session_state
|
| 271 |
+
chat_history = gr.State([])
|
| 272 |
+
chat_input_cache = gr.State("")
|
| 273 |
+
|
| 274 |
+
# Top Title and Badge
|
| 275 |
+
title_html = """
|
| 276 |
+
<div style="text-align: center;">
|
| 277 |
+
<h1>Embformer: An Embedding-Weight-Only Transformer Architecture</h1>
|
| 278 |
+
<div style="display: flex; justify-content: center; align-items: center; gap: 8px; margin-top: 10px;">
|
| 279 |
+
<a href="https://doi.org/10.5281/zenodo.15736957">
|
| 280 |
+
<img src="https://img.shields.io/badge/DOI-10.5281%2Fzenodo.15736957-blue.svg" alt="DOI">
|
| 281 |
+
</a>
|
| 282 |
+
<a href="https://github.com/HighCWu/embformer">
|
| 283 |
+
<img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" alt="code">
|
| 284 |
+
</a>
|
| 285 |
+
<a href="https://huggingface.co/collections/HighCWu/embformer-minimind-685be74dc761610439241bd5">
|
| 286 |
+
<img src="https://img.shields.io/badge/Model-🤗-yellow" alt="model">
|
| 287 |
+
</a>
|
| 288 |
+
</div>
|
| 289 |
+
</div>
|
| 290 |
+
"""
|
| 291 |
+
gr.HTML(title_html)
|
| 292 |
+
gr.Markdown("""
|
| 293 |
+
This is the official demo of [Embformer: An Embedding-Weight-Only Transformer Architecture](https://doi.org/10.5281/zenodo.15736957).
|
| 294 |
+
|
| 295 |
+
**Note**: Since the model dataset used in this demo is derived from the MiniMind dataset, which contains a large proportion of Chinese content, please try to use Chinese as much as possible in the conversation.
|
| 296 |
+
""")
|
| 297 |
+
|
| 298 |
+
with gr.Row():
|
| 299 |
+
with gr.Column(scale=1, min_width=200):
|
| 300 |
+
gr.Markdown("### Model Settings")
|
| 301 |
+
|
| 302 |
+
# Model source switcher
|
| 303 |
+
model_source_radio = gr.Radio(["Local Model", "API"], value="Local Model", label="Select Model Source", visible=False)
|
| 304 |
+
|
| 305 |
+
# Local model settings
|
| 306 |
+
with gr.Group(visible=True) as local_model_group:
|
| 307 |
+
selected_model_dd = gr.Dropdown(
|
| 308 |
+
list(MODEL_PATHS.keys()),
|
| 309 |
+
value="Embformer-MiniMind (0.1B)",
|
| 310 |
+
label="Select Local Model"
|
| 311 |
+
)
|
| 312 |
+
|
| 313 |
+
# API settings
|
| 314 |
+
with gr.Group(visible=False) as api_model_group:
|
| 315 |
+
api_url_tb = gr.Textbox("http://127.0.0.1:8000/v1", label="API URL")
|
| 316 |
+
api_model_id_tb = gr.Textbox("embformer-minimind", label="Model ID")
|
| 317 |
+
api_model_name_tb = gr.Textbox("Embformer-MiniMind (0.1B)", label="Model Name (for feature detection)")
|
| 318 |
+
api_key_tb = gr.Textbox("none", label="API Key", type="password")
|
| 319 |
+
|
| 320 |
+
# Common generation parameters
|
| 321 |
+
history_chat_num_slider = gr.Slider(0, 6, value=0, step=2, label="History Turns")
|
| 322 |
+
max_new_tokens_slider = gr.Slider(256, 8192, value=1024, step=1, label="Max New Tokens")
|
| 323 |
+
temperature_slider = gr.Slider(0.6, 1.2, value=0.85, step=0.01, label="Temperature")
|
| 324 |
+
|
| 325 |
+
# Clear history button
|
| 326 |
+
clear_btn = gr.Button("🗑️ Clear History")
|
| 327 |
+
|
| 328 |
+
with gr.Column(scale=4):
|
| 329 |
+
gr.Markdown("### Chat")
|
| 330 |
+
|
| 331 |
+
chatbot = gr.Chatbot(
|
| 332 |
+
[],
|
| 333 |
+
elem_id="chatbot",
|
| 334 |
+
avatar_images=(None, image_url),
|
| 335 |
+
type="messages",
|
| 336 |
+
height=350
|
| 337 |
+
)
|
| 338 |
+
chat_input = gr.Textbox(
|
| 339 |
+
show_label=False,
|
| 340 |
+
placeholder="Send a message to MiniMind... (Enter to send)",
|
| 341 |
+
container=False,
|
| 342 |
+
scale=7,
|
| 343 |
+
elem_id="chat-textbox",
|
| 344 |
+
)
|
| 345 |
+
examples = gr.Examples(
|
| 346 |
+
examples=prompt_datas,
|
| 347 |
+
inputs=chat_input, # After clicking, the example content will fill chat_input
|
| 348 |
+
label="Click an example to ask (will automatically clear chat and continue)"
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
# --- Event Listeners and Bindings ---
|
| 352 |
+
|
| 353 |
+
# Show/hide corresponding setting groups when switching model source
|
| 354 |
+
def toggle_model_source_ui(source):
|
| 355 |
+
return {
|
| 356 |
+
local_model_group: gr.update(visible=source == "Local Model"),
|
| 357 |
+
api_model_group: gr.update(visible=source == "API")
|
| 358 |
+
}
|
| 359 |
+
model_source_radio.change(
|
| 360 |
+
fn=toggle_model_source_ui,
|
| 361 |
+
inputs=model_source_radio,
|
| 362 |
+
outputs=[local_model_group, api_model_group]
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
# Define the list of input components for the submit event
|
| 366 |
+
submit_inputs = [
|
| 367 |
+
chat_input_cache, chat_history, model_source_radio, selected_model_dd,
|
| 368 |
+
api_url_tb, api_model_id_tb, api_model_name_tb, api_key_tb,
|
| 369 |
+
history_chat_num_slider, max_new_tokens_slider, temperature_slider
|
| 370 |
+
]
|
| 371 |
+
|
| 372 |
+
# When chat_input is submitted (user presses enter or an example is clicked), run chat_fn
|
| 373 |
+
submit_event = chat_input.submit(
|
| 374 |
+
fn=lambda text: ("", text),
|
| 375 |
+
inputs=chat_input,
|
| 376 |
+
outputs=[chat_input, chat_input_cache],
|
| 377 |
+
).then(
|
| 378 |
+
fn=chat_fn,
|
| 379 |
+
inputs=submit_inputs,
|
| 380 |
+
outputs=[chatbot, chat_history],
|
| 381 |
+
)
|
| 382 |
+
|
| 383 |
+
# Event chain for clicking an example
|
| 384 |
+
examples.load_input_event.then(
|
| 385 |
+
fn=lambda text: ("", text, [], []), # A function to clear the history
|
| 386 |
+
inputs=chat_input,
|
| 387 |
+
outputs=[chat_input, chat_input_cache, chatbot, chat_history], # This affects the chatbot and chat_history
|
| 388 |
+
).then(
|
| 389 |
+
fn=chat_fn, # Use the dedicated run_example function
|
| 390 |
+
inputs=submit_inputs, # Pass example text and other settings
|
| 391 |
+
outputs=[chatbot, chat_history],
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
# Clear history button logic
|
| 395 |
+
def clear_history():
|
| 396 |
+
return [], []
|
| 397 |
+
clear_btn.click(fn=clear_history, outputs=[chatbot, chat_history])
|
| 398 |
+
chatbot.clear(fn=clear_history, outputs=[chatbot, chat_history])
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
if __name__ == "__main__":
|
| 402 |
+
# Pre-load the default model on startup
|
| 403 |
+
print("Pre-loading default model...")
|
| 404 |
+
load_model_tokenizer_gradio("Embformer-MiniMind (0.1B)")
|
| 405 |
+
|
| 406 |
+
# Launch the Gradio app
|
| 407 |
+
demo.queue().launch(share=False)
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers @ git+https://github.com/huggingface/transformers.git@cb0f604
|
| 2 |
+
gradio<=5.23.0
|
| 3 |
+
spaces<=0.37.1
|