Spaces:
Sleeping
Sleeping
File size: 3,968 Bytes
9b5b26a c19d193 6aae614 5f12f6a 8fe992b 9b5b26a 5df72d6 9b5b26a 3d1237b 9b5b26a 8c01ffb 5f12f6a ae2aae1 0e9252e 5f12f6a 8c01ffb 6aae614 ae7a494 e121372 bf6d34c 29ec968 fe328e0 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 8c01ffb 8fe992b 156725d 8c01ffb 861422e 8fe992b 9b5b26a 8c01ffb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
import pandas as pd
from Gradio_UI import GradioUI
# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
#Keep this format for the description / args / args description but feel free to modify the tool
"""A tool that does nothing yet
Args:
arg1: the first argument
arg2: the second argument
"""
return "What magic will you build ?"
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
@tool
def filter_dataframe(df: pd.DataFrame, filters: dict) -> pd.DataFrame:
"""
Filters a DataFrame based on provided keys and their corresponding values.
Args:
df:(pd.DataFrame) The pandas DataFrame to filter.
filters: (dict) A dictionary where each key is a column name in the DataFrame,
and the corresponding value is the filter criteria. The filter
value can be a single value for an equality check, or a list of
values to use with the 'isin' filter.
Example:
filters = {
"name": "Alice", # filter where 'name' == "Alice"
"city": ["New York", "Boston"] # filter where 'city' is either "New York" or "Boston"
}
Returns:
pd.DataFrame: A DataFrame filtered based on the provided criteria.
Raises:
ValueError: If any of the provided filter keys are not present in the DataFrame.
"""
filtered_df = df.copy()
for column, value in filters.items():
if column not in filtered_df.columns:
raise ValueError(f"Column '{column}' does not exist in the DataFrame.")
if isinstance(value, list):
# Filter for any value in the list (like SQL IN)
filtered_df = filtered_df[filtered_df[column].isin(value)]
else:
# Filter for equality
filtered_df = filtered_df[filtered_df[column] == value]
return filtered_df
final_answer = FinalAnswerTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
agent = CodeAgent(
model=model,
tools=[final_answer, get_current_time_in_timezone, filter_dataframe], ## add your tools here (don't remove final answer)
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(agent).launch() |