Upload app.py
Browse files
app.py
CHANGED
|
@@ -124,6 +124,20 @@ block = gr.Blocks(css="""
|
|
| 124 |
max-width: 80%;
|
| 125 |
margin: auto;
|
| 126 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
""")
|
| 128 |
with block:
|
| 129 |
with gr.Column(elem_classes="container"):
|
|
@@ -133,53 +147,72 @@ with block:
|
|
| 133 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 134 |
# Table 0
|
| 135 |
with gr.TabItem("🏅 WorldScore Benchmark", elem_id="worldscore-tab-table", id=0):
|
| 136 |
-
with gr.
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
data_component = gr.components.Dataframe(
|
| 151 |
value=get_baseline_df(),
|
| 152 |
headers=COLUMN_NAMES,
|
| 153 |
-
type="pandas",
|
| 154 |
datatype=DATA_TITILE_TYPE,
|
| 155 |
interactive=False,
|
| 156 |
visible=True,
|
|
|
|
| 157 |
)
|
| 158 |
|
| 159 |
-
def on_filter_change(model_types, abilities):
|
| 160 |
df = get_baseline_df()
|
| 161 |
# Filter by selected model types
|
| 162 |
df = df[df['Model Type'].isin(model_types)]
|
| 163 |
# Filter by selected abilities
|
| 164 |
df = df[df['Ability'].isin(abilities)]
|
|
|
|
|
|
|
|
|
|
| 165 |
return gr.Dataframe(
|
| 166 |
value=df,
|
| 167 |
headers=COLUMN_NAMES,
|
| 168 |
type="pandas",
|
| 169 |
datatype=DATA_TITILE_TYPE,
|
| 170 |
interactive=False,
|
| 171 |
-
visible=True
|
|
|
|
| 172 |
)
|
| 173 |
|
| 174 |
model_type_filter.change(
|
| 175 |
fn=on_filter_change,
|
| 176 |
-
inputs=[model_type_filter, ability_filter],
|
| 177 |
outputs=data_component
|
| 178 |
)
|
| 179 |
|
| 180 |
ability_filter.change(
|
| 181 |
fn=on_filter_change,
|
| 182 |
-
inputs=[model_type_filter, ability_filter],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
outputs=data_component
|
| 184 |
)
|
| 185 |
|
|
@@ -255,17 +288,22 @@ with block:
|
|
| 255 |
)
|
| 256 |
|
| 257 |
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
|
|
|
|
|
|
| 269 |
|
| 270 |
|
| 271 |
block.launch()
|
|
|
|
| 124 |
max-width: 80%;
|
| 125 |
margin: auto;
|
| 126 |
}
|
| 127 |
+
/* 添加以下样式来控制表格列宽 */
|
| 128 |
+
.gradio-dataframe {
|
| 129 |
+
overflow-x: auto !important;
|
| 130 |
+
}
|
| 131 |
+
.gradio-dataframe table {
|
| 132 |
+
width: 100% !important;
|
| 133 |
+
white-space: nowrap !important;
|
| 134 |
+
}
|
| 135 |
+
.gradio-dataframe td, .gradio-dataframe th {
|
| 136 |
+
min-width: fit-content !important;
|
| 137 |
+
max-width: none !important;
|
| 138 |
+
white-space: pre-wrap !important;
|
| 139 |
+
padding: 8px !important;
|
| 140 |
+
}
|
| 141 |
""")
|
| 142 |
with block:
|
| 143 |
with gr.Column(elem_classes="container"):
|
|
|
|
| 147 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
| 148 |
# Table 0
|
| 149 |
with gr.TabItem("🏅 WorldScore Benchmark", elem_id="worldscore-tab-table", id=0):
|
| 150 |
+
with gr.Row():
|
| 151 |
+
with gr.Column(scale=0.3):
|
| 152 |
+
model_type_filter = gr.CheckboxGroup(
|
| 153 |
+
choices=MODEL_TYPE,
|
| 154 |
+
value=DEFAULT_MODEL_TYPE,
|
| 155 |
+
label="Model Type",
|
| 156 |
+
interactive=True
|
| 157 |
+
)
|
| 158 |
+
ability_filter = gr.CheckboxGroup(
|
| 159 |
+
choices=ABILITY,
|
| 160 |
+
value=DEFAULT_ABILITY,
|
| 161 |
+
label="Ability",
|
| 162 |
+
interactive=True
|
| 163 |
+
)
|
| 164 |
+
with gr.Column(scale=0.7):
|
| 165 |
+
sort_by_filter = gr.Radio(
|
| 166 |
+
choices=TASK_INFO,
|
| 167 |
+
value=DEFAULT_INFO[0],
|
| 168 |
+
label="Sort by",
|
| 169 |
+
interactive=True
|
| 170 |
+
)
|
| 171 |
|
| 172 |
data_component = gr.components.Dataframe(
|
| 173 |
value=get_baseline_df(),
|
| 174 |
headers=COLUMN_NAMES,
|
| 175 |
+
type="pandas",
|
| 176 |
datatype=DATA_TITILE_TYPE,
|
| 177 |
interactive=False,
|
| 178 |
visible=True,
|
| 179 |
+
wrap=True
|
| 180 |
)
|
| 181 |
|
| 182 |
+
def on_filter_change(model_types, abilities, sort_by):
|
| 183 |
df = get_baseline_df()
|
| 184 |
# Filter by selected model types
|
| 185 |
df = df[df['Model Type'].isin(model_types)]
|
| 186 |
# Filter by selected abilities
|
| 187 |
df = df[df['Ability'].isin(abilities)]
|
| 188 |
+
# Sort by selected sort by
|
| 189 |
+
df = df.sort_values(by=sort_by, ascending=False)
|
| 190 |
+
|
| 191 |
return gr.Dataframe(
|
| 192 |
value=df,
|
| 193 |
headers=COLUMN_NAMES,
|
| 194 |
type="pandas",
|
| 195 |
datatype=DATA_TITILE_TYPE,
|
| 196 |
interactive=False,
|
| 197 |
+
visible=True,
|
| 198 |
+
wrap=True
|
| 199 |
)
|
| 200 |
|
| 201 |
model_type_filter.change(
|
| 202 |
fn=on_filter_change,
|
| 203 |
+
inputs=[model_type_filter, ability_filter, sort_by_filter],
|
| 204 |
outputs=data_component
|
| 205 |
)
|
| 206 |
|
| 207 |
ability_filter.change(
|
| 208 |
fn=on_filter_change,
|
| 209 |
+
inputs=[model_type_filter, ability_filter, sort_by_filter],
|
| 210 |
+
outputs=data_component
|
| 211 |
+
)
|
| 212 |
+
|
| 213 |
+
sort_by_filter.change(
|
| 214 |
+
fn=on_filter_change,
|
| 215 |
+
inputs=[model_type_filter, ability_filter, sort_by_filter],
|
| 216 |
outputs=data_component
|
| 217 |
)
|
| 218 |
|
|
|
|
| 288 |
)
|
| 289 |
|
| 290 |
|
| 291 |
+
def refresh_data():
|
| 292 |
+
value = get_baseline_df()
|
| 293 |
+
data_component.value = value
|
| 294 |
+
model_type_filter.value = DEFAULT_MODEL_TYPE
|
| 295 |
+
ability_filter.value = DEFAULT_ABILITY
|
| 296 |
+
sort_by_filter.value = DEFAULT_INFO[0]
|
| 297 |
|
| 298 |
+
return data_component, model_type_filter, ability_filter, sort_by_filter
|
| 299 |
+
|
| 300 |
+
with gr.Row(elem_classes="container"):
|
| 301 |
+
data_run = gr.Button("Refresh")
|
| 302 |
+
data_run.click(
|
| 303 |
+
refresh_data,
|
| 304 |
+
inputs=[],
|
| 305 |
+
outputs=[data_component, model_type_filter, ability_filter, sort_by_filter]
|
| 306 |
+
)
|
| 307 |
|
| 308 |
|
| 309 |
block.launch()
|