|
|
```python |
|
|
import gradio as gr |
|
|
import os |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
from peft import PeftModel |
|
|
import torch |
|
|
|
|
|
|
|
|
api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") |
|
|
|
|
|
if not api_token: |
|
|
raise ValueError("β ERROR: Hugging Face API token is not set. Please set it as an environment variable.") |
|
|
|
|
|
|
|
|
base_model_name = "unsloth/qwen2.5-math-7b-bnb-4bit" |
|
|
peft_model_name = "Hrushi02/Root_Math" |
|
|
|
|
|
|
|
|
base_model = AutoModelForCausalLM.from_pretrained( |
|
|
base_model_name, |
|
|
torch_dtype=torch.float16, |
|
|
device_map="auto", |
|
|
use_auth_token=api_token |
|
|
) |
|
|
|
|
|
|
|
|
model = PeftModel.from_pretrained(base_model, peft_model_name, token=api_token) |
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(base_model_name, token=api_token) |
|
|
|
|
|
|
|
|
if tokenizer.pad_token is None: |
|
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
def respond( |
|
|
message, |
|
|
history: list[tuple[str, str]], |
|
|
system_message, |
|
|
max_tokens, |
|
|
temperature, |
|
|
top_p, |
|
|
): |
|
|
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
|
|
for val in history: |
|
|
if val[0]: |
|
|
messages.append({"role": "user", "content": val[0]}) |
|
|
if val[1]: |
|
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
|
|
|
prompt = tokenizer.apply_chat_template( |
|
|
messages, tokenize=False, add_generation_prompt=True |
|
|
) |
|
|
|
|
|
|
|
|
inputs = tokenizer([prompt], return_tensors="pt").to(model.device) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
for new_token in model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=max_tokens, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
do_sample=True, |
|
|
pad_token_id=tokenizer.eos_token_id, |
|
|
repetition_penalty=1.1, |
|
|
streamer=None, |
|
|
): |
|
|
|
|
|
new_token_decoded = tokenizer.decode(new_token[-1:], skip_special_tokens=True) |
|
|
yield new_token_decoded |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
|
""" |
|
|
demo = gr.ChatInterface( |
|
|
respond, |
|
|
additional_inputs=[ |
|
|
gr.Textbox(value="You are a helpful math assistant specialized in solving equations and finding roots.", label="System message"), |
|
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
|
gr.Slider( |
|
|
minimum=0.1, |
|
|
maximum=1.0, |
|
|
value=0.95, |
|
|
step=0.05, |
|
|
label="Top-p (nucleus sampling)", |
|
|
), |
|
|
], |
|
|
chatbot=gr.Chatbot(type="messages"), |
|
|
title="Root Math Chatbot", |
|
|
description="A fine-tuned Qwen2.5-Math model for solving roots and math problems." |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
``` |