|
|
import gradio as gr |
|
|
import os |
|
|
from threading import Thread |
|
|
import torch |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, pipeline |
|
|
|
|
|
|
|
|
|
|
|
model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" |
|
|
|
|
|
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
print(f"β
Model '{model_name}' loaded successfully on CPU!") |
|
|
|
|
|
|
|
|
pipe = pipeline( |
|
|
"text-generation", |
|
|
model=model, |
|
|
tokenizer=tokenizer, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
def respond( |
|
|
message, |
|
|
history: list[tuple[str, str]], |
|
|
system_message, |
|
|
max_tokens, |
|
|
temperature, |
|
|
top_p, |
|
|
): |
|
|
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
for user_msg, assistant_msg in history: |
|
|
messages.append({"role": "user", "content": user_msg}) |
|
|
messages.append({"role": "assistant", "content": assistant_msg}) |
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
|
|
|
|
|
|
|
|
|
|
outputs = pipe( |
|
|
prompt, |
|
|
max_new_tokens=max_tokens, |
|
|
temperature=temperature, |
|
|
top_p=top_p, |
|
|
do_sample=True, |
|
|
) |
|
|
|
|
|
|
|
|
full_response = outputs[0]['generated_text'] |
|
|
|
|
|
new_response = full_response.split(prompt)[1] |
|
|
|
|
|
return new_response |
|
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
|
respond, |
|
|
additional_inputs=[ |
|
|
gr.Textbox(value="You are a friendly and helpful chatbot.", label="System message"), |
|
|
gr.Slider(minimum=10, maximum=512, value=128, step=1, label="Max new tokens"), |
|
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), |
|
|
gr.Slider( |
|
|
minimum=0.1, |
|
|
maximum=1.0, |
|
|
value=0.95, |
|
|
step=0.05, |
|
|
label="Top-p (nucleus sampling)", |
|
|
), |
|
|
], |
|
|
title="TinyLlama 1.1B Chat", |
|
|
description="A simple chatbot running on a CPU-friendly model from Hugging Face." |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |