Hrushi02 commited on
Commit
7ee65b2
ยท
verified ยท
1 Parent(s): 0ccd1bf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +63 -77
app.py CHANGED
@@ -1,97 +1,83 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
-
5
- """
6
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
7
- """
8
-
9
  import os
10
- client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta", token=os.getenv("HUGGINGFACEHUB_API_TOKEN"))
11
-
12
-
13
- def respond(
14
- message,
15
- history: list[tuple[str, str]],
16
- system_message,
17
- max_tokens,
18
- temperature,
19
- top_p,
20
- ):
21
- messages = [{"role": "system", "content": system_message}]
22
-
23
- for val in history:
24
- if val[0]:
25
- messages.append({"role": "user", "content": val[0]})
26
- if val[1]:
27
- messages.append({"role": "assistant", "content": val[1]})
28
-
29
- messages.append({"role": "user", "content": message})
30
-
31
- response = ""
32
-
33
- for message in client.chat_completion(
34
- messages,
35
- max_tokens=max_tokens,
36
- stream=True,
37
- temperature=temperature,
38
- top_p=top_p,
39
- ):
40
- token = message.choices[0].delta.content
41
-
42
- response += token
43
- yield response
44
-
45
 
46
  """
47
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
48
  """
49
- demo = gr.ChatInterface(
50
- respond,
51
- additional_inputs=[
52
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
53
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
54
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
55
- gr.Slider(
56
- minimum=0.1,
57
- maximum=1.0,
58
- value=0.95,
59
- step=0.05,
60
- label="Top-p (nucleus sampling)",
61
- ),
62
- ],
63
- )
64
-
65
-
66
- if __name__ == "__main__":
67
- demo.launch()
68
-
69
- import os
70
- from transformers import AutoModelForCausalLM, AutoTokenizer
71
- from peft import PeftModel
72
- import torch
73
 
74
- # Load Hugging Face API token securely
75
  api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
76
-
77
  if not api_token:
78
  raise ValueError("โŒ ERROR: Hugging Face API token is not set. Please set it as an environment variable.")
79
 
80
- # Define model names
81
  base_model_name = "unsloth/qwen2.5-math-7b-bnb-4bit"
82
- peft_model_name = "Hrushi02/Root_Math"
83
 
84
- # Load base model with authentication
 
85
  base_model = AutoModelForCausalLM.from_pretrained(
86
  base_model_name,
87
  torch_dtype=torch.float16,
88
  device_map="auto",
89
- use_auth_token=api_token # โœ… Correct
90
  )
91
 
92
-
93
- # Load fine-tuned model
94
  model = PeftModel.from_pretrained(base_model, peft_model_name, token=api_token)
95
 
96
- # Load tokenizer
 
97
  tokenizer = AutoTokenizer.from_pretrained(base_model_name, token=api_token)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import os
2
+ import torch
3
+ import gradio as gr
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer
5
+ from peft import PeftModel
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
 
7
  """
8
+ Root_Math fine-tuned model chat app for Hugging Face Spaces.
9
  """
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
+ # โœ… Load Hugging Face API token securely
12
  api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
 
13
  if not api_token:
14
  raise ValueError("โŒ ERROR: Hugging Face API token is not set. Please set it as an environment variable.")
15
 
16
+ # โœ… Define model names
17
  base_model_name = "unsloth/qwen2.5-math-7b-bnb-4bit"
18
+ peft_model_name = "Hrushi02/Root_Math" # <-- stays the same
19
 
20
+ # โœ… Load base model
21
+ print("๐Ÿ”„ Loading base model...")
22
  base_model = AutoModelForCausalLM.from_pretrained(
23
  base_model_name,
24
  torch_dtype=torch.float16,
25
  device_map="auto",
26
+ use_auth_token=api_token
27
  )
28
 
29
+ # โœ… Load your fine-tuned PEFT adapter
30
+ print("๐Ÿ”„ Loading fine-tuned adapter...")
31
  model = PeftModel.from_pretrained(base_model, peft_model_name, token=api_token)
32
 
33
+ # โœ… Load tokenizer
34
+ print("๐Ÿ”„ Loading tokenizer...")
35
  tokenizer = AutoTokenizer.from_pretrained(base_model_name, token=api_token)
36
+
37
+ # โœ… Define chat response function
38
+ def respond(message, history, system_message, max_tokens, temperature, top_p):
39
+ """Generate responses from your fine-tuned model."""
40
+ full_prompt = system_message + "\n\n"
41
+ for user_msg, bot_msg in history:
42
+ if user_msg:
43
+ full_prompt += f"User: {user_msg}\n"
44
+ if bot_msg:
45
+ full_prompt += f"Assistant: {bot_msg}\n"
46
+ full_prompt += f"User: {message}\nAssistant:"
47
+
48
+ inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
49
+
50
+ with torch.no_grad():
51
+ outputs = model.generate(
52
+ **inputs,
53
+ max_new_tokens=max_tokens,
54
+ temperature=temperature,
55
+ top_p=top_p,
56
+ do_sample=True
57
+ )
58
+
59
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
60
+ # extract only the assistant's last message
61
+ if "Assistant:" in response:
62
+ response = response.split("Assistant:")[-1].strip()
63
+
64
+ yield response
65
+
66
+
67
+ # โœ… Create Gradio interface
68
+ demo = gr.ChatInterface(
69
+ respond,
70
+ additional_inputs=[
71
+ gr.Textbox(value="You are a helpful math assistant.", label="System message"),
72
+ gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max new tokens"),
73
+ gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
74
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
75
+ ],
76
+ title="๐Ÿงฎ Root Math Assistant",
77
+ description="A fine-tuned math reasoning model by Hrushi02 using Unsloth + PEFT."
78
+ )
79
+
80
+
81
+ # โœ… Launch app
82
+ if __name__ == "__main__":
83
+ demo.launch()