Hrushi02 commited on
Commit
d43dadc
ยท
verified ยท
1 Parent(s): 3dcc254

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +74 -57
app.py CHANGED
@@ -1,80 +1,97 @@
1
- import os
2
- import torch
3
  import gradio as gr
4
- from transformers import AutoModelForCausalLM, AutoTokenizer
 
5
 
6
  """
7
- ๐Ÿงฎ Root_Math full model chat app
8
- Supports private/public repo and GPU/CPU auto-detection.
9
  """
10
 
11
- # โœ… Load Hugging Face API token
12
- api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
13
- if not api_token:
14
- raise ValueError("โŒ ERROR: Hugging Face API token is not set. Please set it as an environment variable.")
15
-
16
- # โœ… Correct model repo name (case-sensitive)
17
- model_name = "Hrushi02/Root_Math" # double-check on HF website
18
-
19
- # โœ… Device and dtype
20
- device = "cuda" if torch.cuda.is_available() else "cpu"
21
- dtype = torch.float16 if device == "cuda" else torch.float32
22
- print(f"โšก Loading model on {device.upper()} with dtype={dtype}")
23
-
24
- # โœ… Load the model (directly, full fine-tuned)
25
- model = AutoModelForCausalLM.from_pretrained(
26
- model_name,
27
- torch_dtype=dtype,
28
- device_map="auto",
29
- token=api_token # required for private repo
30
- )
31
 
32
- # โœ… Load tokenizer
33
- tokenizer = AutoTokenizer.from_pretrained(model_name, token=api_token)
34
 
 
 
 
 
 
 
 
 
 
35
 
36
- # โœ… Response function
37
- def respond(message, history, system_message, max_tokens, temperature, top_p):
38
- """Generate a response using Root_Math model."""
39
- full_prompt = system_message + "\n\n"
40
- for user_msg, bot_msg in history:
41
- if user_msg:
42
- full_prompt += f"User: {user_msg}\n"
43
- if bot_msg:
44
- full_prompt += f"Assistant: {bot_msg}\n"
45
- full_prompt += f"User: {message}\nAssistant:"
46
 
47
- inputs = tokenizer(full_prompt, return_tensors="pt").to(model.device)
48
 
49
- with torch.no_grad():
50
- outputs = model.generate(
51
- **inputs,
52
- max_new_tokens=int(max_tokens),
53
- temperature=float(temperature),
54
- top_p=float(top_p),
55
- do_sample=True
56
- )
57
 
58
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
59
- if "Assistant:" in response:
60
- response = response.split("Assistant:")[-1].strip()
 
 
 
 
 
61
 
62
- yield response
 
63
 
64
 
65
- # โœ… Gradio ChatInterface
 
 
66
  demo = gr.ChatInterface(
67
  respond,
68
  additional_inputs=[
69
- gr.Textbox(value="You are a helpful math assistant.", label="System message"),
70
- gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max new tokens"),
71
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
72
- gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
73
  ],
74
- title="๐Ÿงฎ Root Math Assistant",
75
- description="Fine-tuned by Hrushi02 for mathematical reasoning."
76
  )
77
 
78
- # โœ… Launch app
79
  if __name__ == "__main__":
80
  demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from huggingface_hub import InferenceClient
3
+
4
 
5
  """
6
+ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
 
7
  """
8
 
9
+ import os
10
+ client = InferenceClient(model="HuggingFaceH4/zephyr-7b-beta", token=os.getenv("HUGGINGFACEHUB_API_TOKEN"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
 
 
 
12
 
13
+ def respond(
14
+ message,
15
+ history: list[tuple[str, str]],
16
+ system_message,
17
+ max_tokens,
18
+ temperature,
19
+ top_p,
20
+ ):
21
+ messages = [{"role": "system", "content": system_message}]
22
 
23
+ for val in history:
24
+ if val[0]:
25
+ messages.append({"role": "user", "content": val[0]})
26
+ if val[1]:
27
+ messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
28
 
29
+ messages.append({"role": "user", "content": message})
30
 
31
+ response = ""
 
 
 
 
 
 
 
32
 
33
+ for message in client.chat_completion(
34
+ messages,
35
+ max_tokens=max_tokens,
36
+ stream=True,
37
+ temperature=temperature,
38
+ top_p=top_p,
39
+ ):
40
+ token = message.choices[0].delta.content
41
 
42
+ response += token
43
+ yield response
44
 
45
 
46
+ """
47
+ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
48
+ """
49
  demo = gr.ChatInterface(
50
  respond,
51
  additional_inputs=[
52
+ gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
53
+ gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
54
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
55
+ gr.Slider(
56
+ minimum=0.1,
57
+ maximum=1.0,
58
+ value=0.95,
59
+ step=0.05,
60
+ label="Top-p (nucleus sampling)",
61
+ ),
62
  ],
 
 
63
  )
64
 
65
+
66
  if __name__ == "__main__":
67
  demo.launch()
68
+
69
+ import os
70
+ from transformers import AutoModelForCausalLM, AutoTokenizer
71
+ from peft import PeftModel
72
+ import torch
73
+
74
+ # Load Hugging Face API token securely
75
+ api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN")
76
+
77
+ if not api_token:
78
+ raise ValueError("โŒ ERROR: Hugging Face API token is not set. Please set it as an environment variable.")
79
+
80
+ # Define model names
81
+ base_model_name = "unsloth/qwen2.5-math-7b-bnb-4bit"
82
+ peft_model_name = "Hrushi02/Root_Math"
83
+
84
+ # Load base model with authentication
85
+ base_model = AutoModelForCausalLM.from_pretrained(
86
+ base_model_name,
87
+ torch_dtype=torch.float16,
88
+ device_map="auto",
89
+ use_auth_token=api_token # โœ… Correct
90
+ )
91
+
92
+
93
+ # Load fine-tuned model
94
+ model = PeftModel.from_pretrained(base_model, peft_model_name, token=api_token)
95
+
96
+ # Load tokenizer
97
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name, token=api_token)