import gradio as gr import os from threading import Thread import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from peft import PeftModel # --- 1. Load your Fine-Tuned Model and Tokenizer --- # Make sure to set your HUGGINGFACEHUB_API_TOKEN in your Space's secrets api_token = os.getenv("HUGGINGFACEHUB_API_TOKEN") if not api_token: raise ValueError("❌ ERROR: Hugging Face API token is not set. Please set it in your Space secrets.") # Define model names base_model_name = "unsloth/qwen2.5-math-7b-bnb-4bit" peft_model_name = "Hrushi02/Root_Math" # Load base model and tokenizer base_model = AutoModelForCausalLM.from_pretrained( base_model_name, torch_dtype=torch.float16, device_map="auto", token=api_token ) tokenizer = AutoTokenizer.from_pretrained(base_model_name, token=api_token) # Load your fine-tuned PEFT model model = PeftModel.from_pretrained(base_model, peft_model_name, token=api_token) print("✅ Model loaded successfully!") # --- 2. Rewrite the Respond Function to Use YOUR Model --- def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Create the chat history format messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) # Prepare for streaming streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) # Tokenize the input inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_tensors="pt" ).to(model.device) # Generation arguments generation_kwargs = dict( inputs=inputs, streamer=streamer, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, ) # Start generation in a separate thread thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() # Yield the generated tokens response = "" for token in streamer: response += token yield response # --- 3. Launch the Gradio Interface (No Changes Here) --- demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a math assistant. Solve the following math problem.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()