futurespyhi
1.add YuE 2.modify .gitignore 3.modify requirements.txt
15389e6
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import logging
from enum import Enum
from typing import List
import numpy
import torch
logger = logging.getLogger(__name__)
class Split(Enum):
train = 0
valid = 1
test = 2
def compile_helpers():
"""Compile C++ helper functions at runtime. Make sure this is invoked on a single process.
"""
import os
import subprocess
command = ["make", "-C", os.path.abspath(os.path.dirname(__file__))]
if subprocess.run(command).returncode != 0:
import sys
log_single_rank(logger, logging.ERROR, "Failed to compile the C++ dataset helper functions")
sys.exit(1)
def log_single_rank(logger: logging.Logger, *args, rank=0, **kwargs):
"""If torch distributed is initialized, log only on rank
Args:
logger (logging.Logger): The logger to write the logs
rank (int, optional): The rank to write on. Defaults to 0.
"""
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == rank:
logger.log(*args, **kwargs)
else:
logger.log(*args, **kwargs)
def normalize(weights: List[float]) -> List[float]:
"""Do non-exponentiated normalization
Args:
weights (List[float]): The weights
Returns:
List[float]: The normalized weights
"""
w = numpy.array(weights, dtype=numpy.float64)
w_sum = numpy.sum(w)
w = (w / w_sum).tolist()
return w