Spaces:
Running
Running
File size: 41,567 Bytes
658e790 966b1a5 658e790 966b1a5 658e790 966b1a5 658e790 966b1a5 658e790 3bfebb6 658e790 ef411bc 658e790 1fba260 658e790 c87f4fd 658e790 9362c34 658e790 ce7990e 9853042 658e790 ce7990e 658e790 921388c 658e790 921388c 658e790 326af3b 658e790 921388c 658e790 e3adaee 658e790 2ab39a8 658e790 e3adaee 77da414 658e790 e3adaee 035fdcd e3adaee 035fdcd e3adaee ef411bc 035fdcd ef411bc e3adaee 658e790 e3adaee 658e790 47f310c 658e790 47f310c 3dfa434 47f310c 658e790 47f310c 658e790 47f310c 658e790 ef411bc 658e790 966b1a5 658e790 966b1a5 7b364b8 658e790 8b5e5aa 966b1a5 8b5e5aa 658e790 966b1a5 658e790 966b1a5 658e790 77da414 658e790 6cfc4a3 658e790 2e48849 658e790 26a0c39 658e790 26a0c39 658e790 26a0c39 658e790 26a0c39 658e790 26a0c39 658e790 1fba260 658e790 8b5e5aa 7e55e4f 8b5e5aa 658e790 6cfc4a3 1fba260 6cfc4a3 1fba260 2e48849 658e790 8b5e5aa 658e790 51c37c6 658e790 51c37c6 8b5e5aa 51c37c6 8b5e5aa 51c37c6 658e790 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 |
#!/usr/bin/env python3
"""
MiloMusic - Hugging Face Spaces Version
AI-powered music generation platform optimized for cloud deployment with high-performance configuration.
"""
import multiprocessing
import os
import sys
import subprocess
import tempfile
import gradio as gr
import soundfile as sf
from dataclasses import dataclass, field
from typing import Any
import xxhash
import numpy as np
import spaces
import groq
# Import environment setup for Spaces
def setup_spaces_environment():
"""Setup environment variables and paths for Hugging Face Spaces"""
# Set HuggingFace cache directory
os.environ["HF_HOME"] = "/tmp/hf_cache"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/transformers_cache"
os.environ["HF_HUB_CACHE"] = "/tmp/hf_hub_cache"
# 1.PyTorch CUDA memory optimization 2.็จPyTorch็ๅฏๆฉๅฑๅ
ๅญๆฎตๅ้
, ๆ้ซGPUๅ
ๅญไฝฟ็จๆ็, ๅๅฐๅ
ๅญ็ข็้ฎ้ข
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
# Set temp directory for audio files
os.environ["TMPDIR"] = "/tmp"
print("๐ Environment setup complete for Spaces")
# Install flash-attn if not already installed
def install_flash_attn() -> bool:
"""Install flash-attn from source with proper compilation flags"""
try:
import flash_attn
print("โ
flash-attn already installed")
return True
except ImportError:
print("๐ฆ Installing flash-attn from source...")
try:
# Install with optimized settings for Spaces
cmd = [
sys.executable, "-m", "pip", "install",
"--no-build-isolation",
"--no-cache-dir",
"flash-attn",
"--verbose"
]
# Use more parallel jobs for faster compilation in Spaces
env = os.environ.copy()
max_jobs = min(4, multiprocessing.cpu_count()) # Utilize more CPU cores
env["MAX_JOBS"] = str(max_jobs)
env["NVCC_PREPEND_FLAGS"] = "-ccbin /usr/bin/gcc"
result = subprocess.run(cmd, env=env, capture_output=True, text=True, timeout=1800) # 30 min timeout
if result.returncode == 0:
print("โ
flash-attn installed successfully")
return True
else:
print(f"โ flash-attn installation failed: {result.stderr}")
return False
except subprocess.TimeoutExpired:
print("โฐ flash-attn installation timed out")
return False
except Exception as e:
print(f"โ Error installing flash-attn: {e}")
return False
# Setup environment first
setup_spaces_environment()
# Download required models for YuEGP inference
def download_required_models():
"""Download required model files at startup"""
try:
from download_models import ensure_model_availability
print("๐ Checking and downloading required models...")
success = ensure_model_availability()
if success:
print("โ
Model setup completed successfully")
else:
print("โ ๏ธ Some models may be missing - continuing with available resources")
return success
except ImportError as e:
print(f"โ ๏ธ Model download script not found: {e}")
return False
except Exception as e:
print(f"โ Error during model download: {e}")
return False
# Download models before other setup
models_ready = download_required_models()
# Install flash-attn if needed
flash_attn_available = install_flash_attn()
# Apply transformers patches for performance optimization
def apply_transformers_patch():
"""
Apply YuEGP transformers patches for high-performance generation.
This function applies optimized transformers patches that provide:
- 2x speed improvement for low VRAM profiles
- 3x speed improvement for Stage 1 generation (16GB+ VRAM)
- 2x speed improvement for Stage 2 generation (all profiles)
The patches replace two key files in the transformers library:
- models/llama/modeling_llama.py (LLaMA model optimizations)
- generation/utils.py (generation utilities optimizations)
Includes smart detection to avoid re-applying patches on restart.
"""
try:
import shutil
import site
import hashlib
# Define source and target directories
source_dir = os.path.join(project_root, "YuEGP", "transformers")
# Get the site-packages directory where transformers is installed
site_packages = site.getsitepackages()
if not site_packages:
# Fallback for some environments
import transformers
transformers_path = os.path.dirname(transformers.__file__)
target_base = os.path.dirname(transformers_path)
else:
target_base = site_packages[0]
target_dir = os.path.join(target_base, "transformers")
# Check if source patches exist
if not os.path.exists(source_dir):
print("โ ๏ธ YuEGP transformers patches not found, skipping optimization")
return False
if not os.path.exists(target_dir):
print("โ ๏ธ Transformers library not found, skipping patches")
return False
# Check if patches are already applied by comparing file hashes
def get_file_hash(filepath):
"""Get MD5 hash of file content"""
if not os.path.exists(filepath):
return None
with open(filepath, 'rb') as f:
return hashlib.md5(f.read()).hexdigest()
# Key files to check for patch status
key_patches = [
"models/llama/modeling_llama.py",
"generation/utils.py"
]
patches_needed = False
for patch_file in key_patches:
source_file = os.path.join(source_dir, patch_file)
target_file = os.path.join(target_dir, patch_file)
if os.path.exists(source_file):
source_hash = get_file_hash(source_file)
target_hash = get_file_hash(target_file)
if source_hash != target_hash:
patches_needed = True
break
if not patches_needed:
print("โ
YuEGP transformers patches already applied, skipping re-installation")
print(" ๐ High-performance optimizations are active:")
print(" โข Stage 1 generation: 3x faster (16GB+ VRAM)")
print(" โข Stage 2 generation: 2x faster (all profiles)")
return True
# Apply patches by copying optimized files
print("๐ง Applying YuEGP transformers patches for high-performance generation...")
# Copy the patched files, preserving directory structure
for root, dirs, files in os.walk(source_dir):
# Calculate relative path from source_dir
rel_path = os.path.relpath(root, source_dir)
target_subdir = os.path.join(target_dir, rel_path) if rel_path != '.' else target_dir
# Ensure target subdirectory exists
os.makedirs(target_subdir, exist_ok=True)
# Copy all Python files in this directory
for file in files:
if file.endswith('.py'):
src_file = os.path.join(root, file)
dst_file = os.path.join(target_subdir, file)
shutil.copy2(src_file, dst_file)
print(f" โ
Patched: {os.path.relpath(dst_file, target_base)}")
print("๐ Transformers patches applied successfully!")
print(" ๐ Expected performance gains:")
print(" โข Stage 1 generation: 3x faster (16GB+ VRAM)")
print(" โข Stage 2 generation: 2x faster (all profiles)")
return True
except Exception as e:
print(f"โ Error applying transformers patches: {e}")
print(" Continuing without patches - performance may be reduced")
return False
# Now import the rest of the dependencies
# Add project root to Python path for imports
project_root = os.path.dirname(os.path.abspath(__file__))
if project_root not in sys.path:
sys.path.insert(0, project_root)
from tools.groq_client import client as groq_client
from openai import OpenAI
from tools.generate_lyrics import generate_structured_lyrics, format_lyrics
# Apply patches after all imports are set up
patch_applied = apply_transformers_patch()
# Import CUDA info after flash-attn setup
import torch
if torch.cuda.is_available():
print(f"๐ฎ GPU: {torch.cuda.get_device_name(0)}")
print(f"๐พ VRAM: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f}GB")
else:
print("โ ๏ธ No CUDA GPU detected")
@dataclass
class AppState:
"""
Maintains the application state throughout user interactions.
"""
conversation: list = field(default_factory=list)
stopped: bool = False
model_outs: Any = None
lyrics: str = ""
genre: str = "pop"
mood: str = "upbeat"
theme: str = "love"
def validate_api_keys():
"""Validate required API keys for Spaces deployment"""
required_keys = ["GROQ_API_KEY", "GEMINI_API_KEY"]
missing_keys = []
for key in required_keys:
if not os.getenv(key):
missing_keys.append(key)
if missing_keys:
print(f"โ ๏ธ Missing API keys: {missing_keys}")
return False
print("โ
All API keys validated")
return True
def validate_file_structure():
"""Validate that required files and directories exist"""
required_paths = [
"YuEGP/inference/infer.py",
"YuEGP/inference/codecmanipulator.py",
"YuEGP/inference/mmtokenizer.py",
"tools/generate_lyrics.py",
"tools/groq_client.py",
"schemas/lyrics.py" # Required for lyrics structure models
]
missing_files = []
for path in required_paths:
if not os.path.exists(path):
missing_files.append(path)
if missing_files:
print(f"โ ๏ธ Missing required files: {missing_files}")
return False
print("โ
All required files found")
return True
@spaces.GPU(duration=1200) # H200 on ZeroGPU is free for 25mins, for compatibility on A10G large and L40s
def generate_music_spaces(lyrics: str, genre: str, mood: str, progress=gr.Progress()) -> str:
"""
Generate music using YuE model with high-performance Spaces configuration
"""
if not lyrics.strip():
return "Please provide lyrics to generate music."
try:
progress(0.1, desc="Preparing lyrics...")
# Use lyrics directly (already formatted from chat interface)
formatted_lyrics = lyrics
# Create temporary files
with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False) as genre_file:
genre_file.write(f"instrumental,{genre},{mood},male vocals")
genre_file_path = genre_file.name
# Convert lyrics format for YuEGP compatibility
# YuEGP expects [VERSE], [CHORUS] format, but our AI generates **VERSE**, **CHORUS**
import re
# Extract only the actual lyrics content, removing AI commentary
formatted_lyrics_for_yue = formatted_lyrics
# Convert **VERSE 1** to [VERSE], **CHORUS** to [CHORUS], etc.
formatted_lyrics_for_yue = re.sub(r'\*\*(VERSE\s*\d*)\*\*', r'[\1]', formatted_lyrics_for_yue)
formatted_lyrics_for_yue = re.sub(r'\*\*(CHORUS)\*\*', r'[\1]', formatted_lyrics_for_yue)
formatted_lyrics_for_yue = re.sub(r'\*\*(BRIDGE)\*\*', r'[\1]', formatted_lyrics_for_yue)
formatted_lyrics_for_yue = re.sub(r'\*\*(OUTRO)\*\*', r'[\1]', formatted_lyrics_for_yue)
# Remove AI commentary (lines that don't contain actual lyrics)
lines = formatted_lyrics_for_yue.split('\n')
clean_lines = []
in_song = False
for line in lines:
line = line.strip()
# Start collecting from first section marker
if re.match(r'\[(VERSE|CHORUS|BRIDGE|OUTRO)', line):
in_song = True
# Stop at AI commentary
if in_song and line and not line.startswith('[') and any(phrase in line.lower() for phrase in ['how do you like', 'would you like', 'let me know', 'take a look']):
break
if in_song:
clean_lines.append(line)
formatted_lyrics_for_yue = '\n'.join(clean_lines).strip()
print(f"๐ DEBUG - Original lyrics length: {len(formatted_lyrics)}")
print(f"๐ DEBUG - Converted lyrics for YuE: '{formatted_lyrics_for_yue}'")
print(f"๐ DEBUG - Converted lyrics length: {len(formatted_lyrics_for_yue)}")
with tempfile.NamedTemporaryFile(mode='w', suffix='.txt', delete=False) as lyrics_file:
lyrics_file.write(formatted_lyrics_for_yue)
lyrics_file_path = lyrics_file.name
progress(0.2, desc="Setting up generation...")
# Generate music with high-performance Spaces configuration
output_dir = tempfile.mkdtemp()
# High-performance command based on Spaces GPU resources
# In Spaces, working directory is /app
infer_script_path = os.path.join(os.getcwd(), "YuEGP", "inference", "infer.py")
cmd = [
sys.executable,
infer_script_path,
"--cuda_idx", "0",
"--stage1_model", "m-a-p/YuE-s1-7B-anneal-en-cot",
"--stage2_model", "m-a-p/YuE-s2-1B-general",
"--genre_txt", genre_file_path,
"--lyrics_txt", lyrics_file_path,
"--run_n_segments", "2", # Full segments for better quality
"--stage2_batch_size", "4", # Higher batch size for speed
"--output_dir", output_dir,
"--max_new_tokens", "3000", # Full token count
"--profile", "1", # Highest performance profile
"--verbose", "3",
"--rescale", # Enable audio rescaling to proper volume
"--prompt_start_time", "0",
"--prompt_end_time", "30", # Full 30-second clips
]
# Use flash attention if available, otherwise fallback
if not flash_attn_available:
cmd.append("--sdpa")
# More detailed progress updates
progress(0.1, desc="๐ Initializing models...")
progress(0.15, desc="๐ Processing lyrics...")
progress(0.2, desc="๐ต Starting Stage 1 (7B model generation)...")
# Extract parameters from cmd for logging
run_n_segments = cmd[cmd.index("--run_n_segments") + 1] if "--run_n_segments" in cmd else "2"
max_new_tokens = cmd[cmd.index("--max_new_tokens") + 1] if "--max_new_tokens" in cmd else "3000"
print("๐ต Starting high-quality music generation...")
print(f"๐ Generation settings: {run_n_segments} segments, {max_new_tokens} tokens, 30s audio")
print(f"โฑ๏ธ Estimated time: 8-9 minutes for high-quality generation")
print(f"Working directory: {os.getcwd()}")
print(f"Command: {' '.join(cmd)}")
# Change to YuEGP/inference directory for execution
original_cwd = os.getcwd()
inference_dir = os.path.join(os.getcwd(), "YuEGP", "inference")
try:
os.chdir(inference_dir)
print(f"Changed to inference directory: {inference_dir}")
cmd[1] = "infer.py"
progress(0.25, desc="๐ฅ Stage 1: Running 7B parameter model...")
# Start the subprocess
import threading
import time
def parse_output_and_update_progress(process):
"""Parse subprocess output in real-time and update progress accordingly"""
stage1_messages = [
"๐ง Stage 1: Generating musical concepts...",
"๐ผ Stage 1: Creating melody patterns...",
"๐น Stage 1: Composing harmony structure..."
]
stage2_messages = [
"โก Starting Stage 2: Refining with 1B model...",
"๐ต Stage 2: Adding musical details...",
"๐ถ Stage 2: Finalizing composition..."
]
stage1_progress = [0.3, 0.45, 0.6]
stage2_progress = [0.7, 0.8, 0.85]
current_stage = 1
stage1_step = 0
stage2_step = 0
output_lines = []
try:
while True:
line = process.stdout.readline()
if not line:
break
line = line.strip()
output_lines.append(line)
print(line) # Still print for debugging
# Check for stage transitions based on actual output
if "Stage 2 inference..." in line:
current_stage = 2
stage2_step = 0
progress(0.7, desc=stage2_messages[0])
print(f"โณ {stage2_messages[0]}")
elif "Stage 2 DONE" in line:
progress(0.9, desc="๐ Decoding to audio format...")
print("โณ ๐ Decoding to audio format...")
# Update Stage 1 progress periodically
elif current_stage == 1 and stage1_step < len(stage1_messages):
# Update Stage 1 progress every 15 seconds or on specific markers
if stage1_step < len(stage1_progress):
progress(stage1_progress[stage1_step], desc=stage1_messages[stage1_step])
print(f"โณ {stage1_messages[stage1_step]}")
stage1_step += 1
# Update Stage 2 progress periodically
elif current_stage == 2 and stage2_step < len(stage2_messages) - 1:
stage2_step += 1
if stage2_step < len(stage2_progress):
progress(stage2_progress[stage2_step], desc=stage2_messages[stage2_step])
print(f"โณ {stage2_messages[stage2_step]}")
except Exception as e:
print(f"Progress parsing error: {e}")
return '\n'.join(output_lines)
print(f"๐ Executing command: {' '.join(cmd)}")
# Use Popen for real-time output processing
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT,
text=True, bufsize=1, universal_newlines=True)
# Parse output in real-time
stdout_output = parse_output_and_update_progress(process)
# Wait for process to complete and get return code
return_code = process.wait()
# Create result object similar to subprocess.run
class Result:
def __init__(self, returncode, stdout, stderr=""):
self.returncode = returncode
self.stdout = stdout
self.stderr = stderr
result = Result(return_code, stdout_output)
# Print stdout and stderr for debugging
if result.stdout:
print(f"โ
Command output:\n{result.stdout}")
if result.stderr:
print(f"โ ๏ธ Command stderr:\n{result.stderr}")
print(f"๐ Return code: {result.returncode}")
finally:
os.chdir(original_cwd)
progress(0.95, desc="๐ Processing completed, finalizing output...")
# Clean up input files
os.unlink(genre_file_path)
os.unlink(lyrics_file_path)
if result.returncode == 0:
# Find generated audio file - prioritize mixed audio from vocoder/mix directory
import glob
final_files = glob.glob(os.path.join(output_dir, "*_mixed.mp3"))
if final_files:
progress(1.0, desc="Finish music generation")
print(f"โ
Found audio file at root: {final_files[0]}")
return final_files[0]
# First look for the final mixed audio in vocoder/mix
mixed_files = glob.glob(os.path.join(output_dir, "vocoder/mix/*_mixed.mp3"))
if mixed_files:
progress(1.0, desc="Music generation complete!")
print(f"โ
Found mixed audio file: {mixed_files[0]}")
return mixed_files[0]
# Fallback to any MP3 file
audio_files = glob.glob(os.path.join(output_dir, "**/*.mp3"), recursive=True)
if audio_files:
progress(1.0, desc="Music generation complete!")
print(f"โ
Found audio file: {audio_files[0]}")
return audio_files[0] # Return path to generated audio
else:
print(f"โ No audio files found in {output_dir}")
print(f"Directory contents: {os.listdir(output_dir) if os.path.exists(output_dir) else 'Directory not found'}")
return "Music generation completed but no audio file found."
else:
error_msg = f"Return code: {result.returncode}\n"
if result.stderr:
error_msg += f"Error: {result.stderr[-1000:]}\n"
if result.stdout:
error_msg += f"Output: {result.stdout[-1000:]}"
return f"Music generation failed:\n{error_msg}"
except subprocess.TimeoutExpired:
return "Music generation timed out after 20 minutes. Please try again."
except Exception as e:
return f"Error during music generation: {str(e)}"
def respond(message, state):
"""Enhanced response function for conversational lyrics generation"""
try:
# Add user message to conversation
state.conversation.append({"role": "user", "content": message})
# Use conversational generation logic (same as voice input)
response = generate_chat_completion(groq_client, state.conversation, state.genre, state.mood, state.theme)
# Add assistant response
state.conversation.append({"role": "assistant", "content": response})
# Update lyrics with improved format recognition - extract only segments
if any(marker in response.lower() for marker in ["[verse", "[chorus", "[bridge", "**verse", "**chorus", "sectiontype.verse", "verse:"]):
state.lyrics = extract_lyrics_segments_only(response)
# Format conversation for display
return "", [{"role": msg["role"], "content": msg["content"]} for msg in state.conversation], state
except Exception as e:
error_response = f"Sorry, I encountered an error: {str(e)}"
state.conversation.append({"role": "assistant", "content": error_response})
return "", [{"role": msg["role"], "content": msg["content"]} for msg in state.conversation], state
def build_interface():
"""Build the Gradio interface optimized for Spaces with high performance"""
with gr.Blocks(
title="MiloMusic - AI Music Generation",
theme=gr.themes.Soft(),
css="""
.container { max-width: 1400px; margin: auto; }
.performance-notice { background-color: #d4edda; padding: 15px; border-radius: 5px; margin: 10px 0; }
.generation-status { background-color: #f8f9fa; padding: 10px; border-radius: 5px; }
"""
) as demo:
# Header
gr.Markdown("""
# ๐ต MiloMusic - AI Music Generation
### Professional AI-powered music creation from natural language
""")
# Performance notice for Spaces
gr.Markdown("""
<div class="performance-notice">
๐ <strong>High-Performance Mode:</strong> Running on Spaces GPU with optimized settings for best quality.
Generation time: ~8-9 minutes for professional-grade music with vocals and instruments.
</div>
""")
state = gr.State(AppState())
with gr.Row():
with gr.Column(scale=2):
# Input controls
with gr.Group():
gr.Markdown("### ๐๏ธ Music Settings")
with gr.Row():
genre = gr.Dropdown(
choices=["pop", "rock", "jazz", "classical", "electronic", "folk", "r&b", "country", "hip-hop"],
value="pop", label="Genre"
)
mood = gr.Dropdown(
choices=["upbeat", "melancholic", "energetic", "calm", "romantic", "dark", "mysterious", "joyful"],
value="upbeat", label="Mood"
)
theme = gr.Dropdown(
choices=["love", "friendship", "adventure", "nostalgia", "freedom", "hope", "dreams", "nature"],
value="love", label="Theme"
)
# Voice Input
with gr.Group():
gr.Markdown("### ๐ค Voice Input")
input_audio = gr.Audio(
label="Speak Your Musical Ideas",
sources=["microphone"],
type="numpy",
streaming=False,
waveform_options=gr.WaveformOptions(waveform_color="#B83A4B"),
)
# Chat interface
with gr.Group():
gr.Markdown("### ๐ฌ Lyrics Creation Chat")
chatbot = gr.Chatbot(height=400, label="AI Lyrics Assistant", show_copy_button=True, type="messages")
with gr.Row():
text_input = gr.Textbox(
placeholder="Or type your song idea here...",
show_label=False,
scale=4,
lines=2
)
send_btn = gr.Button("Send", scale=1, variant="primary")
with gr.Column(scale=1):
# Output controls
with gr.Group():
gr.Markdown("### ๐ต Music Generation")
lyrics_display = gr.Textbox(
label="Current Lyrics",
lines=12,
interactive=True,
placeholder="Your generated lyrics will appear here..."
)
generate_btn = gr.Button("๐ผ Generate High-Quality Music", variant="primary", size="lg")
with gr.Column():
music_output = gr.Audio(label="Generated Music", type="filepath", show_download_button=True)
gr.Markdown("""
<div class="generation-status">
<strong>Generation Features:</strong><br>
โข Full 30-second clips<br>
โข Professional vocals<br>
โข Rich instrumentation<br>
โข High-fidelity audio
</div>
""")
# Controls
with gr.Group():
gr.Markdown("### ๐ง Controls")
new_song_btn = gr.Button("๐ Start New Song")
clear_btn = gr.Button("๐งน Clear Chat")
# Event handlers
def update_state_settings(genre_val, mood_val, theme_val, state):
state.genre = genre_val
state.mood = mood_val
state.theme = theme_val
return state
# Update state when settings change
for component in [genre, mood, theme]:
component.change(
fn=update_state_settings,
inputs=[genre, mood, theme, state],
outputs=[state]
)
# Voice recording functionality (from app.py)
stream = input_audio.start_recording(
process_audio,
[input_audio, state],
[input_audio, state],
)
respond_audio = input_audio.stop_recording(
response_audio, [state, input_audio, genre, mood, theme], [state, chatbot, lyrics_display]
)
restart = respond_audio.then(start_recording_user, [state], [input_audio]).then(
lambda state: state, state, state, js=js_reset
)
# Text chat functionality with lyrics update
def respond_with_lyrics_update(message, state):
text_output, chat_output, updated_state = respond(message, state)
return text_output, chat_output, updated_state, updated_state.lyrics
send_btn.click(
fn=respond_with_lyrics_update,
inputs=[text_input, state],
outputs=[text_input, chatbot, state, lyrics_display],
queue=True
)
text_input.submit(
fn=respond_with_lyrics_update,
inputs=[text_input, state],
outputs=[text_input, chatbot, state, lyrics_display],
queue=True
)
# Music generation with progress
generate_btn.click(
fn=generate_music_spaces,
inputs=[lyrics_display, genre, mood],
outputs=[music_output],
queue=True,
show_progress=True
)
# Control buttons
new_song_btn.click(
fn=lambda: (AppState(), [], "", None, gr.Audio(recording=False)),
outputs=[state, chatbot, lyrics_display, music_output, input_audio],
cancels=[respond_audio, restart]
)
clear_btn.click(
fn=lambda: [],
outputs=[chatbot]
)
# Auto-update lyrics display when state changes
state.change(
fn=lambda s: s.lyrics,
inputs=[state],
outputs=[lyrics_display]
)
# Instructions
gr.Markdown("""
### ๐ How to create your music:
1. **Set your preferences**: Choose genre, mood, and theme
2. **Voice or chat**: Either speak your ideas or type them in the chat
3. **Refine the lyrics**: Ask for changes, different verses, or style adjustments
4. **Generate music**: Click the generate button for professional-quality output
5. **Download & enjoy**: Your high-fidelity music with vocals and instruments
**Tips**: Be specific about your vision - mention instruments, vocal style, or song structure!
""")
# Footer
gr.Markdown("""
---
<center>
Made with โค๏ธ by the MiloMusic Team | Powered by YuE (ไน) Model | ๐ค Hugging Face Spaces
</center>
""")
return demo
# Audio transcription functions (from app.py)
def process_whisper_response(completion):
"""
Process Whisper transcription response and filter out silence.
"""
if completion.segments and len(completion.segments) > 0:
no_speech_prob = completion.segments[0].get('no_speech_prob', 0)
print("No speech prob:", no_speech_prob)
if no_speech_prob > 0.7:
print("No speech detected")
return None
return completion.text.strip()
return None
def transcribe_audio(client, file_name):
"""
Transcribe an audio file using the Whisper model via the Groq API.
"""
if file_name is None:
return None
try:
with open(file_name, "rb") as audio_file:
with open("audio.wav", "wb") as f:
f.write(audio_file.read())
response = client.audio.transcriptions.create(
model="whisper-large-v3-turbo",
file=("audio.wav", audio_file),
response_format="text",
language="en",
)
# Process the response to filter out silence
# For text response format, we need to check if response is meaningful
if response and len(response.strip()) > 0:
return response.strip()
else:
return None
except Exception as e:
print(f"Transcription error: {e}")
return f"Error in audio transcription: {str(e)}"
def start_recording_user(state: AppState):
"""
Reset the audio recording component for a new user input.
"""
return None
def process_audio(audio: tuple, state: AppState):
"""
Process recorded audio in real-time during recording.
"""
return audio, state
@spaces.GPU(duration=40, progress=gr.Progress(track_tqdm=True))
def response_audio(state: AppState, audio: tuple, genre_value, mood_value, theme_value):
"""
Process recorded audio and generate a response based on transcription.
"""
if not audio:
return state, []
# Update state with current dropdown values
state.genre, state.mood, state.theme = genre_value, mood_value, theme_value
temp_dir = tempfile.gettempdir()
file_name = os.path.join(temp_dir, f"{xxhash.xxh32(bytes(audio[1])).hexdigest()}.wav")
sf.write(file_name, audio[1], audio[0], format="wav")
api_key = os.environ.get("GROQ_API_KEY")
if not api_key:
raise ValueError("Please set the GROQ_API_KEY environment variable.")
client = groq.Client(api_key=api_key)
# Transcribe the audio file
transcription = transcribe_audio(client, file_name)
if transcription:
if isinstance(transcription, str) and transcription.startswith("Error"):
transcription = "Error in audio transcription."
state.conversation.append({"role": "user", "content": transcription})
assistant_message = generate_chat_completion(client, state.conversation, state.genre, state.mood, state.theme)
state.conversation.append({"role": "assistant", "content": assistant_message})
# Update lyrics using same logic as text input for consistency - extract only segments
if any(marker in assistant_message.lower() for marker in ["[verse", "[chorus", "[bridge", "**verse", "**chorus", "sectiontype.verse", "verse:"]):
state.lyrics = extract_lyrics_segments_only(assistant_message)
os.remove(file_name)
# Format conversation for display in messages format
conversation_display = []
for msg in state.conversation:
conversation_display.append({"role": msg["role"], "content": msg["content"]})
return state, conversation_display, state.lyrics
def extract_lyrics_segments_only(content):
"""
Extract only the lyrics segments (VERSE, CHORUS, etc.) from AI response,
removing any AI commentary or explanation text.
"""
import re
if not content:
return ""
lines = content.split('\n')
lyrics_lines = []
in_lyrics_section = False
for line in lines:
line = line.strip()
# Check if this line is a section header (VERSE, CHORUS, etc.)
if re.match(r'^\*\*(VERSE|CHORUS|BRIDGE|OUTRO).*\*\*$', line) or re.match(r'^\[(VERSE|CHORUS|BRIDGE|OUTRO).*\]$', line):
in_lyrics_section = True
lyrics_lines.append(line)
continue
# If we're in a lyrics section
if in_lyrics_section:
# Stop if we hit AI commentary
if line and any(phrase in line.lower() for phrase in [
'how do you like', 'would you like', 'let me know',
'what do you think', 'any changes', 'take a look',
'here are the lyrics', 'i\'ve created', 'feel free to'
]):
break
# Add lyrics line (including empty lines for formatting)
lyrics_lines.append(line)
return '\n'.join(lyrics_lines).strip()
def extract_lyrics_from_conversation(conversation):
"""
Extract lyrics from conversation history with cross-platform compatibility.
"""
lyrics = ""
for message in reversed(conversation):
if message["role"] == "assistant":
content_lower = message["content"].lower()
# ๅ
ๅฐ่ฏไธฅๆ ผๅน้
๏ผไฟๆๅ้ป่พ๏ผ
if "verse" in content_lower and "chorus" in content_lower:
lyrics = extract_lyrics_segments_only(message["content"])
break
# ๅฆๆๆฒกๆพๅฐ๏ผๅ็จๅฎฝๆณๅน้
๏ผๅ
ผๅฎนๆงๅค้๏ผ
elif any(marker in content_lower for marker in ["[verse", "[chorus", "**verse", "**chorus"]):
lyrics = extract_lyrics_segments_only(message["content"])
break
return lyrics
def generate_chat_completion(client, history, genre, mood, theme):
"""
Generate an AI assistant response based on conversation history and song parameters.
"""
messages = []
system_prompt = f"""You are a creative AI music generator assistant. Help users create song lyrics in the {genre} genre with a {mood} mood about {theme}.
When generating lyrics, create a chorus and at least one verse. Format lyrics clearly with VERSE and CHORUS labels.
Ask if they like the lyrics or want changes. Be conversational, friendly, and creative.
Keep the lyrics appropriate for the selected genre, mood, and theme unless the user specifically requests changes."""
messages.append({
"role": "system",
"content": system_prompt,
})
for message in history:
messages.append(message)
try:
completion = client.chat.completions.create(
model="meta-llama/llama-4-scout-17b-16e-instruct",
messages=messages,
)
return completion.choices[0].message.content
except Exception as e:
return f"Error in generating chat completion: {str(e)}"
# JavaScript for frontend enhancements
js_reset = """
() => {
var record = document.querySelector('.record-button');
if (record) {
record.textContent = "Just Start Talking!"
record.style = "width: fit-content; padding-right: 0.5vw;"
}
}
"""
# Build the interface
demo = build_interface()
if __name__ == "__main__":
"""
Spaces entry point - optimized for high-performance deployment
"""
print("๐ Starting MiloMusic High-Performance Mode on Hugging Face Spaces...")
print(f"๐ Working directory: {os.getcwd()}")
print(f"๐ Directory contents: {os.listdir('.')}")
# Validate file structure
if not validate_file_structure():
print("โ Required files missing - please check your upload")
sys.exit(1)
# Validate environment
if not validate_api_keys():
print("โ ๏ธ Some API keys missing - functionality may be limited")
# Launch with optimized settings for Spaces
demo.queue(
default_concurrency_limit=5, # Allow more concurrent users
max_size=20
).launch(
server_name="0.0.0.0",
server_port=7860,
share=False, # Spaces handles sharing
show_error=True,
quiet=False,
favicon_path=None,
ssl_verify=False
) |