Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
844c526
1
Parent(s):
5c49818
very big update
Browse files
app.py
CHANGED
|
@@ -1,24 +1,72 @@
|
|
| 1 |
import os
|
| 2 |
import subprocess
|
|
|
|
| 3 |
|
|
|
|
|
|
|
|
|
|
| 4 |
from playwright.sync_api import sync_playwright
|
|
|
|
|
|
|
| 5 |
from typing import List
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
-
import
|
| 9 |
-
from gradio_client.client import DEFAULT_TEMP_DIR
|
| 10 |
-
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 11 |
|
| 12 |
|
| 13 |
API_TOKEN = os.getenv("HF_AUTH_TOKEN")
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
#
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
IMAGE_GALLERY_PATHS = [
|
|
@@ -36,11 +84,13 @@ def install_playwright():
|
|
| 36 |
|
| 37 |
install_playwright()
|
| 38 |
|
|
|
|
| 39 |
def add_file_gallery(
|
| 40 |
selected_state: gr.SelectData,
|
| 41 |
gallery_list: List[str]
|
| 42 |
):
|
| 43 |
-
return
|
|
|
|
| 44 |
|
| 45 |
def render_webpage(
|
| 46 |
html_css_code,
|
|
@@ -68,6 +118,22 @@ def render_webpage(
|
|
| 68 |
def model_inference(
|
| 69 |
image,
|
| 70 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
CAR_COMPNAY = """<!DOCTYPE html>
|
| 72 |
<html lang="en">
|
| 73 |
<head>
|
|
@@ -189,8 +255,8 @@ def model_inference(
|
|
| 189 |
|
| 190 |
</body>
|
| 191 |
</html>"""
|
| 192 |
-
rendered_page = render_webpage(
|
| 193 |
-
return
|
| 194 |
|
| 195 |
|
| 196 |
generated_html = gr.Code(
|
|
@@ -216,7 +282,7 @@ with gr.Blocks(title="Img2html", theme=gr.themes.Base(), css=css) as demo:
|
|
| 216 |
with gr.Row(equal_height=True):
|
| 217 |
with gr.Column(scale=4, min_width=250) as upload_area:
|
| 218 |
imagebox = gr.Image(
|
| 219 |
-
type="
|
| 220 |
label="Screenshot to extract",
|
| 221 |
visible=True,
|
| 222 |
sources=["upload", "clipboard"],
|
|
@@ -253,7 +319,6 @@ with gr.Blocks(title="Img2html", theme=gr.themes.Base(), css=css) as demo:
|
|
| 253 |
triggers=[
|
| 254 |
imagebox.upload,
|
| 255 |
submit_btn.click,
|
| 256 |
-
template_gallery.select,
|
| 257 |
regenerate_btn.click,
|
| 258 |
],
|
| 259 |
fn=model_inference,
|
|
@@ -274,6 +339,10 @@ with gr.Blocks(title="Img2html", theme=gr.themes.Base(), css=css) as demo:
|
|
| 274 |
inputs=[template_gallery],
|
| 275 |
outputs=[imagebox],
|
| 276 |
queue=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
)
|
| 278 |
demo.load(queue=False)
|
| 279 |
|
|
|
|
| 1 |
import os
|
| 2 |
import subprocess
|
| 3 |
+
import torch
|
| 4 |
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
from gradio_client.client import DEFAULT_TEMP_DIR
|
| 8 |
from playwright.sync_api import sync_playwright
|
| 9 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 10 |
+
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension
|
| 11 |
from typing import List
|
| 12 |
from PIL import Image
|
| 13 |
|
| 14 |
+
from transformers.image_transforms import resize, to_channel_dimension_format
|
|
|
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
API_TOKEN = os.getenv("HF_AUTH_TOKEN")
|
| 18 |
+
DEVICE = torch.device("cuda")
|
| 19 |
+
PROCESSOR = AutoProcessor.from_pretrained(
|
| 20 |
+
"HuggingFaceM4/img2html",
|
| 21 |
+
token=API_TOKEN,
|
| 22 |
+
)
|
| 23 |
+
MODEL = AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
"HuggingFaceM4/img2html", #TODO
|
| 25 |
+
token=API_TOKEN,
|
| 26 |
+
trust_remote_code=True,
|
| 27 |
+
torch_dtype=torch.bfloat16,
|
| 28 |
+
).to(DEVICE)
|
| 29 |
+
if MODEL.config.use_resampler:
|
| 30 |
+
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents
|
| 31 |
+
else:
|
| 32 |
+
image_seq_len = (
|
| 33 |
+
MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size
|
| 34 |
+
) ** 2
|
| 35 |
+
BOS_TOKEN = PROCESSOR.tokenizer.bos_token
|
| 36 |
+
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
## Utils
|
| 40 |
+
|
| 41 |
+
def convert_to_rgb(image):
|
| 42 |
+
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background
|
| 43 |
+
# for transparent images. The call to `alpha_composite` handles this case
|
| 44 |
+
if image.mode == "RGB":
|
| 45 |
+
return image
|
| 46 |
+
|
| 47 |
+
image_rgba = image.convert("RGBA")
|
| 48 |
+
background = Image.new("RGBA", image_rgba.size, (255, 255, 255))
|
| 49 |
+
alpha_composite = Image.alpha_composite(background, image_rgba)
|
| 50 |
+
alpha_composite = alpha_composite.convert("RGB")
|
| 51 |
+
return alpha_composite
|
| 52 |
+
|
| 53 |
+
# The processor is the same as the Idefics processor except for the BICUBIC interpolation inside siglip,
|
| 54 |
+
# so this is a hack in order to redefine ONLY the transform method
|
| 55 |
+
def custom_transform(x):
|
| 56 |
+
x = convert_to_rgb(x)
|
| 57 |
+
x = to_numpy_array(x)
|
| 58 |
+
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR)
|
| 59 |
+
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255)
|
| 60 |
+
x = PROCESSOR.image_processor.normalize(
|
| 61 |
+
x,
|
| 62 |
+
mean=PROCESSOR.image_processor.image_mean,
|
| 63 |
+
std=PROCESSOR.image_processor.image_std
|
| 64 |
+
)
|
| 65 |
+
x = to_channel_dimension_format(x, ChannelDimension.FIRST)
|
| 66 |
+
x = torch.tensor(x)
|
| 67 |
+
return x
|
| 68 |
+
|
| 69 |
+
## End of Utils
|
| 70 |
|
| 71 |
|
| 72 |
IMAGE_GALLERY_PATHS = [
|
|
|
|
| 84 |
|
| 85 |
install_playwright()
|
| 86 |
|
| 87 |
+
|
| 88 |
def add_file_gallery(
|
| 89 |
selected_state: gr.SelectData,
|
| 90 |
gallery_list: List[str]
|
| 91 |
):
|
| 92 |
+
return Image.open(gallery_list.root[selected_state.index].image.path)
|
| 93 |
+
|
| 94 |
|
| 95 |
def render_webpage(
|
| 96 |
html_css_code,
|
|
|
|
| 118 |
def model_inference(
|
| 119 |
image,
|
| 120 |
):
|
| 121 |
+
if image is None:
|
| 122 |
+
raise ValueError("`image` is None. It should be a PIL image.")
|
| 123 |
+
|
| 124 |
+
inputs = PROCESSOR.tokenizer(
|
| 125 |
+
f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>",
|
| 126 |
+
return_tensors="pt"
|
| 127 |
+
)
|
| 128 |
+
inputs["pixel_values"] = PROCESSOR.image_processor(
|
| 129 |
+
[image],
|
| 130 |
+
transform=custom_transform
|
| 131 |
+
)
|
| 132 |
+
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
| 133 |
+
generated_ids = MODEL.generate(**inputs, bad_words_ids=BAD_WORDS_IDS)
|
| 134 |
+
generated_text = PROCESSOR.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 135 |
+
print(generated_text)
|
| 136 |
+
|
| 137 |
CAR_COMPNAY = """<!DOCTYPE html>
|
| 138 |
<html lang="en">
|
| 139 |
<head>
|
|
|
|
| 255 |
|
| 256 |
</body>
|
| 257 |
</html>"""
|
| 258 |
+
rendered_page = render_webpage(generated_text)
|
| 259 |
+
return generated_text, rendered_page
|
| 260 |
|
| 261 |
|
| 262 |
generated_html = gr.Code(
|
|
|
|
| 282 |
with gr.Row(equal_height=True):
|
| 283 |
with gr.Column(scale=4, min_width=250) as upload_area:
|
| 284 |
imagebox = gr.Image(
|
| 285 |
+
type="pil",
|
| 286 |
label="Screenshot to extract",
|
| 287 |
visible=True,
|
| 288 |
sources=["upload", "clipboard"],
|
|
|
|
| 319 |
triggers=[
|
| 320 |
imagebox.upload,
|
| 321 |
submit_btn.click,
|
|
|
|
| 322 |
regenerate_btn.click,
|
| 323 |
],
|
| 324 |
fn=model_inference,
|
|
|
|
| 339 |
inputs=[template_gallery],
|
| 340 |
outputs=[imagebox],
|
| 341 |
queue=False,
|
| 342 |
+
).success(
|
| 343 |
+
fn=model_inference,
|
| 344 |
+
inputs=[imagebox],
|
| 345 |
+
outputs=[generated_html, rendered_html],
|
| 346 |
)
|
| 347 |
demo.load(queue=False)
|
| 348 |
|