Update app.py
Browse files
app.py
CHANGED
|
@@ -10,6 +10,10 @@ from sentence_transformers import SentenceTransformer
|
|
| 10 |
import faiss
|
| 11 |
import json
|
| 12 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
logging.basicConfig(
|
| 15 |
level=logging.DEBUG,
|
|
@@ -23,7 +27,7 @@ if not API_KEY:
|
|
| 23 |
logger.error("HF_API_KEY non impostata.")
|
| 24 |
raise EnvironmentError("HF_API_KEY non impostata.")
|
| 25 |
|
| 26 |
-
client = InferenceClient(
|
| 27 |
|
| 28 |
RDF_FILE = "Ontologia.rdf"
|
| 29 |
HF_MODEL = "Qwen/Qwen2.5-72B-Instruct"
|
|
@@ -137,7 +141,7 @@ async def call_hf_model(messages, temperature=0.5, max_tokens=1024)->str:
|
|
| 137 |
max_tokens=max_tokens,
|
| 138 |
top_p=0.9
|
| 139 |
)
|
| 140 |
-
raw=resp["choices"][0]["message"]["content"]
|
| 141 |
# Forziamo la query su linea singola se multiline
|
| 142 |
single_line = " ".join(raw.splitlines())
|
| 143 |
logger.debug(f"Risposta HF single-line: {single_line}")
|
|
@@ -146,100 +150,101 @@ async def call_hf_model(messages, temperature=0.5, max_tokens=1024)->str:
|
|
| 146 |
logger.error(f"HuggingFace error: {e}")
|
| 147 |
raise HTTPException(status_code=500, detail=str(e))
|
| 148 |
|
| 149 |
-
app=FastAPI()
|
| 150 |
|
| 151 |
class QueryRequest(BaseModel):
|
| 152 |
-
message:str
|
| 153 |
-
max_tokens:int=1024
|
| 154 |
-
temperature:float=0.5
|
| 155 |
|
| 156 |
@app.post("/generate-response/")
|
| 157 |
-
async def generate_response(req:QueryRequest):
|
| 158 |
-
user_input=req.message
|
| 159 |
logger.info(f"Utente dice: {user_input}")
|
| 160 |
|
| 161 |
# Recupera documenti rilevanti usando RAG
|
| 162 |
relevant_docs = retrieve_relevant_documents(user_input, top_k=3)
|
| 163 |
retrieved_text = "\n".join([doc['text'] for doc in relevant_docs])
|
| 164 |
|
| 165 |
-
sys_msg=create_system_message(knowledge_text, retrieved_text)
|
| 166 |
-
msgs=[
|
| 167 |
-
{"role":"system","content":sys_msg},
|
| 168 |
-
{"role":"user","content":user_input}
|
| 169 |
]
|
|
|
|
| 170 |
# Primo tentativo
|
| 171 |
-
r1=await call_hf_model(msgs, req.temperature, req.max_tokens)
|
| 172 |
logger.info(f"PRIMA RISPOSTA:\n{r1}")
|
| 173 |
|
| 174 |
# Se non parte con "PREFIX base:"
|
| 175 |
if not r1.startswith("PREFIX base:"):
|
| 176 |
-
sc=f"Non hai risposto con query SPARQL su una sola riga. Riprova. Domanda: {user_input}"
|
| 177 |
-
msgs2=[
|
| 178 |
-
{"role":"system","content":sys_msg},
|
| 179 |
-
{"role":"assistant","content":r1},
|
| 180 |
-
{"role":"user","content":sc}
|
| 181 |
]
|
| 182 |
-
r2=await call_hf_model(msgs2,req.temperature,req.max_tokens)
|
| 183 |
logger.info(f"SECONDA RISPOSTA:\n{r2}")
|
| 184 |
if r2.startswith("PREFIX base:"):
|
| 185 |
-
sparql_query=r2
|
| 186 |
else:
|
| 187 |
-
return {"type":"NATURAL","response": r2}
|
| 188 |
else:
|
| 189 |
-
sparql_query=r1
|
| 190 |
|
| 191 |
# Esegui la query con rdflib
|
| 192 |
-
g=rdflib.Graph()
|
| 193 |
try:
|
| 194 |
-
g.parse(RDF_FILE,format="xml")
|
| 195 |
except Exception as e:
|
| 196 |
logger.error(f"Parsing RDF error: {e}")
|
| 197 |
-
return {"type":"ERROR","response":f"Parsing RDF error: {e}"}
|
| 198 |
|
| 199 |
try:
|
| 200 |
-
results=g.query(sparql_query)
|
| 201 |
except Exception as e:
|
| 202 |
-
fallback=f"La query SPARQL ha fallito. Riprova. Domanda: {user_input}"
|
| 203 |
-
msgs3=[
|
| 204 |
-
{"role":"system","content":sys_msg},
|
| 205 |
-
{"role":"assistant","content":sparql_query},
|
| 206 |
-
{"role":"user","content":fallback}
|
| 207 |
]
|
| 208 |
-
r3=await call_hf_model(msgs3,req.temperature,req.max_tokens)
|
| 209 |
if r3.startswith("PREFIX base:"):
|
| 210 |
-
sparql_query=r3
|
| 211 |
try:
|
| 212 |
-
results=g.query(sparql_query)
|
| 213 |
except Exception as e2:
|
| 214 |
-
return {"type":"ERROR","response":f"Query fallita di nuovo: {e2}"}
|
| 215 |
else:
|
| 216 |
-
return {"type":"NATURAL","response":r3}
|
| 217 |
|
| 218 |
-
if len(results)==0:
|
| 219 |
-
return {"type":"NATURAL","sparql_query":sparql_query,"response":"Nessun risultato."}
|
| 220 |
|
| 221 |
# Confeziona risultati
|
| 222 |
-
row_list=[]
|
| 223 |
for row in results:
|
| 224 |
-
row_str=", ".join([f"{k}:{v}" for k,v in row.asdict().items()])
|
| 225 |
row_list.append(row_str)
|
| 226 |
-
results_str="\n".join(row_list)
|
| 227 |
|
| 228 |
# Spiegazione
|
| 229 |
-
exp_prompt=create_explanation_prompt(results_str)
|
| 230 |
-
msgs4=[
|
| 231 |
-
{"role":"system","content":exp_prompt},
|
| 232 |
-
{"role":"user","content":""}
|
| 233 |
]
|
| 234 |
-
explanation=await call_hf_model(msgs4,req.temperature,req.max_tokens)
|
| 235 |
|
| 236 |
return {
|
| 237 |
-
"type":"NATURAL",
|
| 238 |
-
"sparql_query":sparql_query,
|
| 239 |
-
"sparql_results":row_list,
|
| 240 |
-
"explanation":explanation
|
| 241 |
}
|
| 242 |
|
| 243 |
@app.get("/")
|
| 244 |
def home():
|
| 245 |
-
return {"message":"Prompt lascia libertà su come chiamare la proprietà del materiale, ma suggerisce un possibile 'materialeOpera'."}
|
|
|
|
| 10 |
import faiss
|
| 11 |
import json
|
| 12 |
import numpy as np
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
|
| 15 |
+
# Carica le variabili d'ambiente
|
| 16 |
+
load_dotenv()
|
| 17 |
|
| 18 |
logging.basicConfig(
|
| 19 |
level=logging.DEBUG,
|
|
|
|
| 27 |
logger.error("HF_API_KEY non impostata.")
|
| 28 |
raise EnvironmentError("HF_API_KEY non impostata.")
|
| 29 |
|
| 30 |
+
client = InferenceClient(token=API_KEY)
|
| 31 |
|
| 32 |
RDF_FILE = "Ontologia.rdf"
|
| 33 |
HF_MODEL = "Qwen/Qwen2.5-72B-Instruct"
|
|
|
|
| 141 |
max_tokens=max_tokens,
|
| 142 |
top_p=0.9
|
| 143 |
)
|
| 144 |
+
raw = resp["choices"][0]["message"]["content"]
|
| 145 |
# Forziamo la query su linea singola se multiline
|
| 146 |
single_line = " ".join(raw.splitlines())
|
| 147 |
logger.debug(f"Risposta HF single-line: {single_line}")
|
|
|
|
| 150 |
logger.error(f"HuggingFace error: {e}")
|
| 151 |
raise HTTPException(status_code=500, detail=str(e))
|
| 152 |
|
| 153 |
+
app = FastAPI()
|
| 154 |
|
| 155 |
class QueryRequest(BaseModel):
|
| 156 |
+
message: str
|
| 157 |
+
max_tokens: int = 1024
|
| 158 |
+
temperature: float = 0.5
|
| 159 |
|
| 160 |
@app.post("/generate-response/")
|
| 161 |
+
async def generate_response(req: QueryRequest):
|
| 162 |
+
user_input = req.message
|
| 163 |
logger.info(f"Utente dice: {user_input}")
|
| 164 |
|
| 165 |
# Recupera documenti rilevanti usando RAG
|
| 166 |
relevant_docs = retrieve_relevant_documents(user_input, top_k=3)
|
| 167 |
retrieved_text = "\n".join([doc['text'] for doc in relevant_docs])
|
| 168 |
|
| 169 |
+
sys_msg = create_system_message(knowledge_text, retrieved_text)
|
| 170 |
+
msgs = [
|
| 171 |
+
{"role": "system", "content": sys_msg},
|
| 172 |
+
{"role": "user", "content": user_input}
|
| 173 |
]
|
| 174 |
+
|
| 175 |
# Primo tentativo
|
| 176 |
+
r1 = await call_hf_model(msgs, req.temperature, req.max_tokens)
|
| 177 |
logger.info(f"PRIMA RISPOSTA:\n{r1}")
|
| 178 |
|
| 179 |
# Se non parte con "PREFIX base:"
|
| 180 |
if not r1.startswith("PREFIX base:"):
|
| 181 |
+
sc = f"Non hai risposto con query SPARQL su una sola riga. Riprova. Domanda: {user_input}"
|
| 182 |
+
msgs2 = [
|
| 183 |
+
{"role": "system", "content": sys_msg},
|
| 184 |
+
{"role": "assistant", "content": r1},
|
| 185 |
+
{"role": "user", "content": sc}
|
| 186 |
]
|
| 187 |
+
r2 = await call_hf_model(msgs2, req.temperature, req.max_tokens)
|
| 188 |
logger.info(f"SECONDA RISPOSTA:\n{r2}")
|
| 189 |
if r2.startswith("PREFIX base:"):
|
| 190 |
+
sparql_query = r2
|
| 191 |
else:
|
| 192 |
+
return {"type": "NATURAL", "response": r2}
|
| 193 |
else:
|
| 194 |
+
sparql_query = r1
|
| 195 |
|
| 196 |
# Esegui la query con rdflib
|
| 197 |
+
g = rdflib.Graph()
|
| 198 |
try:
|
| 199 |
+
g.parse(RDF_FILE, format="xml")
|
| 200 |
except Exception as e:
|
| 201 |
logger.error(f"Parsing RDF error: {e}")
|
| 202 |
+
return {"type": "ERROR", "response": f"Parsing RDF error: {e}"}
|
| 203 |
|
| 204 |
try:
|
| 205 |
+
results = g.query(sparql_query)
|
| 206 |
except Exception as e:
|
| 207 |
+
fallback = f"La query SPARQL ha fallito. Riprova. Domanda: {user_input}"
|
| 208 |
+
msgs3 = [
|
| 209 |
+
{"role": "system", "content": sys_msg},
|
| 210 |
+
{"role": "assistant", "content": sparql_query},
|
| 211 |
+
{"role": "user", "content": fallback}
|
| 212 |
]
|
| 213 |
+
r3 = await call_hf_model(msgs3, req.temperature, req.max_tokens)
|
| 214 |
if r3.startswith("PREFIX base:"):
|
| 215 |
+
sparql_query = r3
|
| 216 |
try:
|
| 217 |
+
results = g.query(sparql_query)
|
| 218 |
except Exception as e2:
|
| 219 |
+
return {"type": "ERROR", "response": f"Query fallita di nuovo: {e2}"}
|
| 220 |
else:
|
| 221 |
+
return {"type": "NATURAL", "response": r3}
|
| 222 |
|
| 223 |
+
if len(results) == 0:
|
| 224 |
+
return {"type": "NATURAL", "sparql_query": sparql_query, "response": "Nessun risultato."}
|
| 225 |
|
| 226 |
# Confeziona risultati
|
| 227 |
+
row_list = []
|
| 228 |
for row in results:
|
| 229 |
+
row_str = ", ".join([f"{k}:{v}" for k, v in row.asdict().items()])
|
| 230 |
row_list.append(row_str)
|
| 231 |
+
results_str = "\n".join(row_list)
|
| 232 |
|
| 233 |
# Spiegazione
|
| 234 |
+
exp_prompt = create_explanation_prompt(results_str)
|
| 235 |
+
msgs4 = [
|
| 236 |
+
{"role": "system", "content": exp_prompt},
|
| 237 |
+
{"role": "user", "content": ""}
|
| 238 |
]
|
| 239 |
+
explanation = await call_hf_model(msgs4, req.temperature, req.max_tokens)
|
| 240 |
|
| 241 |
return {
|
| 242 |
+
"type": "NATURAL",
|
| 243 |
+
"sparql_query": sparql_query,
|
| 244 |
+
"sparql_results": row_list,
|
| 245 |
+
"explanation": explanation
|
| 246 |
}
|
| 247 |
|
| 248 |
@app.get("/")
|
| 249 |
def home():
|
| 250 |
+
return {"message": "Prompt lascia libertà su come chiamare la proprietà del materiale, ma suggerisce un possibile 'materialeOpera'."}
|