Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,87 +1,99 @@
|
|
| 1 |
-
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
# Define a function that takes a text input and returns the result
|
| 8 |
-
def analyze_text(input):
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
param_model_name="CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth"
|
| 14 |
-
|
| 15 |
-
tokenizer = AutoTokenizer.from_pretrained(param_model_name)
|
| 16 |
-
|
| 17 |
-
class BertForSTS(torch.nn.Module):
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
#
|
| 56 |
-
#
|
| 57 |
-
|
| 58 |
-
#
|
| 59 |
-
|
| 60 |
-
#
|
| 61 |
-
#
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
model
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
#
|
| 80 |
-
iface = gr.Interface(
|
| 81 |
-
fn=analyze_text, # The function to be called with user input
|
| 82 |
-
inputs=[gr.Textbox(), gr.Textbox()],
|
| 83 |
-
outputs="text" # Display the result as text
|
| 84 |
-
)
|
| 85 |
-
|
| 86 |
-
# # Launch the Gradio interface
|
| 87 |
-
iface.launch()
|
|
|
|
| 1 |
+
from pydrive.auth import GoogleAuth
|
| 2 |
+
from pydrive.drive import GoogleDrive
|
| 3 |
+
|
| 4 |
+
# Authenticate and create the PyDrive client.
|
| 5 |
+
gauth = GoogleAuth()
|
| 6 |
+
gauth.LocalWebserverAuth()
|
| 7 |
+
drive = GoogleDrive(gauth)
|
| 8 |
+
|
| 9 |
+
# Replace 'file_id' with the actual ID of your file in Google Drive.
|
| 10 |
+
file_id = '1lDfR_B3fYM_rmC8H_HDtRdxJKveYWmOp'
|
| 11 |
+
|
| 12 |
+
# Create a GoogleDriveFile instance with the file ID.
|
| 13 |
+
file_obj = drive.CreateFile({'id': file_id})
|
| 14 |
+
|
| 15 |
+
# Download the file content.
|
| 16 |
+
downloaded_file_path = 'downloaded_model.pth'
|
| 17 |
+
file_obj.GetContentFile(downloaded_file_path)
|
| 18 |
+
|
| 19 |
+
print("ok")
|
| 20 |
+
|
| 21 |
+
# import gradio as gr
|
| 22 |
+
# from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 23 |
+
# import torch
|
| 24 |
+
# from sentence_transformers import SentenceTransformer, models
|
| 25 |
+
# param_max_length=256
|
| 26 |
|
| 27 |
+
# # Define a function that takes a text input and returns the result
|
| 28 |
+
# def analyze_text(input):
|
| 29 |
+
# # Your processing or model inference code here
|
| 30 |
+
# result = predict_similarity(input)
|
| 31 |
+
# return result
|
| 32 |
+
|
| 33 |
+
# param_model_name="CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth"
|
| 34 |
+
|
| 35 |
+
# tokenizer = AutoTokenizer.from_pretrained(param_model_name)
|
| 36 |
+
|
| 37 |
+
# class BertForSTS(torch.nn.Module):
|
| 38 |
+
|
| 39 |
+
# def __init__(self):
|
| 40 |
+
# super(BertForSTS, self).__init__()
|
| 41 |
+
# #self.bert = models.Transformer('bert-base-uncased', max_seq_length=128)
|
| 42 |
+
# #self.bert = AutoModelForSequenceClassification.from_pretrained("CAMeL-Lab/bert-base-arabic-camelbert-msa-sixteenth")
|
| 43 |
+
# self.bert = models.Transformer(param_model_name, max_seq_length=param_max_length)
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
# dimension= self.bert.get_word_embedding_dimension()
|
| 47 |
+
# #print(dimension)
|
| 48 |
+
# self.pooling_layer = models.Pooling(dimension)
|
| 49 |
+
# self.dropout = torch.nn.Dropout(0.1)
|
| 50 |
+
|
| 51 |
+
# # relu activation function
|
| 52 |
+
# self.relu = torch.nn.ReLU()
|
| 53 |
+
|
| 54 |
+
# # dense layer 1
|
| 55 |
+
# self.fc1 = torch.nn.Linear(dimension,512)
|
| 56 |
+
|
| 57 |
+
# # dense layer 2 (Output layer)
|
| 58 |
+
# self.fc2 = torch.nn.Linear(512,512)
|
| 59 |
+
# #self.pooling_layer = models.Pooling(self.bert.config.hidden_size)
|
| 60 |
+
# self.sts_bert = SentenceTransformer(modules=[self.bert,self.pooling_layer, self.fc1])
|
| 61 |
+
# #self.sts_bert = SentenceTransformer(modules=[self.bert,self.pooling_layer, self.fc1, self.relu, self.dropout,self.fc2])
|
| 62 |
+
# def forward(self, input_data):
|
| 63 |
+
# #print(input_data)
|
| 64 |
+
# x=self.bert(input_data)
|
| 65 |
+
# x=self.pooling_layer(x)
|
| 66 |
+
# x=self.fc1(x['sentence_embedding'])
|
| 67 |
+
# x = self.relu(x)
|
| 68 |
+
# x = self.dropout(x)
|
| 69 |
+
# #x = self.fc2(x)
|
| 70 |
+
|
| 71 |
+
# return x
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# model_load_path = "model.pt"
|
| 76 |
+
# model = BertForSTS()
|
| 77 |
+
# model.load_state_dict(torch.load(model_load_path))
|
| 78 |
+
# model.to(device)
|
| 79 |
+
|
| 80 |
+
# def predict_similarity(sentence_pair):
|
| 81 |
+
# test_input = tokenizer(sentence_pair, padding='max_length', max_length = param_max_length, truncation=True, return_tensors="pt").to(device)
|
| 82 |
+
# test_input['input_ids'] = test_input['input_ids']
|
| 83 |
+
# print(test_input['input_ids'])
|
| 84 |
+
# test_input['attention_mask'] = test_input['attention_mask']
|
| 85 |
+
# del test_input['token_type_ids']
|
| 86 |
+
# output = model(test_input)
|
| 87 |
+
# sim = torch.nn.functional.cosine_similarity(output[0], output[1], dim=0).item()*2-1
|
| 88 |
+
|
| 89 |
+
# return sim
|
| 90 |
+
|
| 91 |
+
# # Create a Gradio interface with a text input zone
|
| 92 |
+
# iface = gr.Interface(
|
| 93 |
+
# fn=analyze_text, # The function to be called with user input
|
| 94 |
+
# inputs=[gr.Textbox(), gr.Textbox()],
|
| 95 |
+
# outputs="text" # Display the result as text
|
| 96 |
+
# )
|
| 97 |
+
|
| 98 |
+
# # # Launch the Gradio interface
|
| 99 |
+
# iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|