File size: 1,269 Bytes
94264be 7f9be3f 85dfb18 7f9be3f 94264be 7f9be3f 94264be 85dfb18 7f9be3f 94264be 85dfb18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
---
title: Spleen Segmentation Demo
emoji: 🖥️
colorFrom: blue
colorTo: gray
sdk: gradio
sdk_version: 5.49.0
app_file: app.py
pinned: false
short_description: 3D spleen segmentation with MONAI
models:
- MONAI/example_spleen_segmentation
---
# CT Spleen Segmentation Demo
This Space demonstrates 3D spleen segmentation from CT scans using the [MONAI/example_spleen_segmentation](https://huggingface.co/MONAI/example_spleen_segmentation) model.
## Model Information
- **Architecture**: UNet
- **Input**: 3D CT images (96×96×96)
- **Output**: Binary segmentation (spleen vs background)
- **Performance**: Mean Dice Score = 0.96
- **Training**: Trained on Medical Segmentation Decathlon Challenge 2018 dataset
## How to Use
1. Upload a CT scan in NIfTI format (.nii or .nii.gz)
2. Click "Segment Spleen"
3. View the segmentation overlay (middle slice visualization)
4. Download the full 3D segmentation
## Requirements
- MONAI
- PyTorch
- nibabel
- numpy
- huggingface_hub
## Citation
If you use this model, please cite:
```
Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training."
arXiv preprint arXiv:1811.12506 (2018).
```
## Disclaimer
This is an example demonstration, not to be used for diagnostic purposes. |