File size: 1,269 Bytes
94264be
 
7f9be3f
85dfb18
7f9be3f
94264be
7f9be3f
94264be
 
85dfb18
 
7f9be3f
94264be
 
85dfb18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
---
title: Spleen Segmentation Demo
emoji: 🖥️
colorFrom: blue
colorTo: gray
sdk: gradio
sdk_version: 5.49.0
app_file: app.py
pinned: false
short_description: 3D spleen segmentation with MONAI
models:
- MONAI/example_spleen_segmentation
---

# CT Spleen Segmentation Demo

This Space demonstrates 3D spleen segmentation from CT scans using the [MONAI/example_spleen_segmentation](https://huggingface.co/MONAI/example_spleen_segmentation) model.

## Model Information

- **Architecture**: UNet
- **Input**: 3D CT images (96×96×96)
- **Output**: Binary segmentation (spleen vs background)
- **Performance**: Mean Dice Score = 0.96
- **Training**: Trained on Medical Segmentation Decathlon Challenge 2018 dataset

## How to Use

1. Upload a CT scan in NIfTI format (.nii or .nii.gz)
2. Click "Segment Spleen"
3. View the segmentation overlay (middle slice visualization)
4. Download the full 3D segmentation

## Requirements

- MONAI
- PyTorch
- nibabel
- numpy
- huggingface_hub

## Citation

If you use this model, please cite:

```
Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training." 
arXiv preprint arXiv:1811.12506 (2018).
```

## Disclaimer

This is an example demonstration, not to be used for diagnostic purposes.